SDL-SERVER PhysikSkript/Das PhYsiK-sKriPt
PhysikSkript

Das PhYsiK-sKriPt

PhysikSkript.PhysikSkript History

Hide minor edits - Show changes to output

April 01, 2013, at 09:54 PM by sdl - Aktualisiert
Added line 51:
# %red% [[#Dielektrizitaetszahl | Die Dieelektrizitätszahl]]
Added lines 71-73:
# %red% [[#ElWiderstand | Der elektrische Widerstand]]
# %red% [[#ReihenWiderstaende | Reihenschaltung von Widerständen]]
# %red% [[#ParallelWiderstaende | Parallelschaltung von Widerständen]]
Added lines 80-99:
# %red% [[#ModellElementarmagn | Modell der Elementarmagnete]]
# %red% [[#MagMonopole | Separation der Pole eines Magneten]]
# %red% [[#KraftStromdurchflLeiter | Kraft auf stromdurchflossene Leiter]]
# %red% [[#MagnFlussdichte | Die magnetische Flussdichte - ein Maß für die Stärke magnetischer Felder]]
# %red% [[#Elektronenmassenbestimmung | Bestimmung der Masse von Elektronen]]
# %red% [[#Massenspektrograph | Der Massenspektrograph]]
# %red% [[#Halleffekt | Der Halleffekt]]
# %red% [[#MagFeldLangeSpule | Das Magnetfeld einer lang gestreckten Spule]]
# %red% [[#InduktionLeiterstueck | Induktion in einem geraden Leiterstück]]
# %red% [[#MagnetischerFluss | Magnetischer Fluss und Flussdichte und deren anschauliche Bedeutung]]
# %red% [[#InduktionSpule | Induktionsspannung in Spulen]]
# %red% [[#InduktionFlussdichtenaenderung | Induktion auch ohne Bewegung?]]
# %red% [[#ElWirbelfelder | Elektrische Wirbelfelder]]
# %red% [[#AnwendungenElWirbelfelder | Anwendungen elektrischer Wirbelfelder]]
# %red% [[#LenzEnergieerhaltung | Der Zusammenhang zwischen Lenz'schem Gesetz & Energieerhalungssatz]]
# %red% [[#Induktivitaet | Die Induktivität (oder auch Eigeninduktivität)]]
# %red% [[#EinschaltvorgangSelbstinduktion | Selbstinduktion - Der Einschaltvorgang]]
# %red% [[#SchwingungenMathematisch | Ideenfindundung: Wie kann man Schwingungen mathematisch beschreiben?]]
# %red% [[#DefHarmonSchwingung | Definition der haromonischen Schwingung]]
Changed lines 505-506 from:
------------------------------------------------
to:
!![[#Dielektrizitaetszahl]]{+33. Dieelektrizitätszahl+}
Exp._ Durch {$C_1=(Q_1)/U$} wird die Kapazität eines Plattenkondensators bestimmt. Anschließend wird eine Plexiglasscheibe zwischen die Kondensatorplatten eingeschoben und der Vorgang wiederholt: {$C_2=(Q_2)/U$} (Spannung gleich) Durch die Plexiglasscheibe hat sich die Kapazität um den Faktor {$epsi_r$} erhöht. Diese Zahl ist vom eingeschobenen Stoff abhängig und wird Dielektrizitätszahl genannt.
%width:300px% Attach:33_Plexiglas_zwischen_kondensatorplatten.jpg

||border=1
||Stoff||Dielektrozitötszahl {$E_r$}||
||Luft||1,00058||
||Wachs||2||
||Glas||5 bis 16||
||Alkohol||26||
||Wasser||81||
||Keramik mit BgSr||10000||
Daraus folgt für die Kapazität eines Kondensators und seine Flächenladungsdichte:
{$C=epsi_0*epsi_r*A/d sigma=epsi_0*epsi_r*E$}
Changed line 685 from:
[[#DefStromstaerke]] {+48. Die elektrische Stromstärke+}
to:
!![[#DefStromstaerke]] {+48. Die elektrische Stromstärke+}
Changed lines 703-704 from:
[[#Leistungsberechnung]] {+50.Berechnung der Leistung+}
to:
!![[#Leistungsberechnung]] {+50.Berechnung der Leistung+}
Changed lines 709-710 from:
[[#Kilowattstunden]] {+51. Die Einheit Kilowattstunden+}
to:
!![[#Kilowattstunden]] {+51. Die Einheit Kilowattstunden+}
Added lines 719-774:
!![[#ElWiderstand]]{+52. Der elektrische Widerstand+}

Experiment:
Über einen dicken Draht und eine dahinter geschaltete Glühbirne fließt ein Strom, die Glühbirne leuchtet hell. Anschließend wird der dicke Draht durch einen dünnen ausgetauscht. Ergebnis: Die Glühbirne leuchtet dunkler...was ist passiert???

Attach:_Draht_zwischen_Isolatorenstangen_.jpg

=> Der Ladungsstrom hat offenbar größere Schwierigkeiten, durch den dünnen Draht zu fließen als durch den dicken
=> In der Physik sagt man: Der elektrische Widerstand des dünnen Drahtes ist größer als der des dicken
=> Erhöht man die anliegende Spannung, so fließt auch mehr Strom durch den Draht. Aufgrund des dadurch stärkeren elektrischen Feldes im Leiter, werden die Elektronen mit einer größeren Kraft durch den Stromkreis gezogen

Je-desto-Beziehungen:
=> Je größer der Strom bei gleichbleibender Spannung, desto kleiner der Widerstand
=> Je größer die Spannung bei gleichbleibendem Strom, desto größer der Widerstand
--> R=U/I erfüllt die Beziehungen und eignet sich als Definition für den Widerstand

Das Ohm'sche Gesetz:
{$ R = U/I $} Widerstand = Anliegende Spannung / Durchfließenden Strom
Einheit: 1{$ Omega $} = 1V/1A 1Ohm = 1Volt/ 1Ampere

Beispiele:
Wir messen den Widerstand...
...einer Glühbirne
...eines Föhns
...eines Tauchsieders

!![[#ReihenWiderstaende]]{+53. Reihenschaltung von Widerständen+}

Attach:_Reihenschaltung_Widerstände_.jpg

Bei einer Reihenschaltung durchläuft der Strom nacheinander alle in Reihe geschalteten Widerstände.

Es gelten folgende Gesetze bei n in Reihe geschalteten Widerständen:

{$ R_(ges) = R_1 + R_2 + R_3 + ... + R_n $} <- wird auch "Ersatzwiderstand" genannt

{$ U_(ges) = U_1 + U_2 + U_3 + ... + U_n $}

{$ I_(ges) = I_1 + I_2 + I_3 + ... + I_n $} <- Durch den Widerstand fließt der selbe Strom

!![[#ParallelWiderstaende]]{+54. Parallelschaltung von Widerständen+}

%width=300px% Attach:54_Parallelschaltung_Widerstaende.jpg
Bei einer Parallelschaltung wird jeder parallel geschaltete Widerstand von einem anderen Strom durchflossen

[+''Gesetze für parallel geschaltete Widerstände:''+]

{$ I_(ges)=I_1+I_2+I_3+...+I_n $}
{$ U_(ges)=U_1+U_2+U_3+...+U_n $}

Nach dem Ohmschen Gesetz gilt: {$ R=U/I $}
daraus folgt: {$ I=U/R $}
{$ I_(ges)=(U_(ges))/(R_(ges))=(U_(ges))/(R_1)+(U_(ges))/(R_2)+(U_(ges))/(R_3)+...+(U_(ges))/(R_n) $}

{$rArr 1/(R_(ges))=1/(R_1)+(1)/(R_2)+(1)/(R_3)+...+(1)/(R_n) $}
Changed lines 787-788 from:
[[#EnergiedichteEFeld]] {+56. Die Energiedichte des elektrischen Feldes+}
to:
!![[#EnergiedichteEFeld]] {+56. Die Energiedichte des elektrischen Feldes+}
Changed lines 799-800 from:
[[#PotentialWiderstandKondensator]] {+57. Potential an Widerstand und Kondensator+}
to:
!![[#PotentialWiderstandKondensator]] {+57. Potential an Widerstand und Kondensator+}
Added lines 827-860:
[++'''58.3:'''++]

Experiment: Entladung eines Kondensators mit CASSY
Durch die seitlich dargestellte Schaltung wird mit dem computergestützten Messsystem CASSY der Strom- und Spannungsverlauf graphisch dargestellt.

%width=300% Attach:58_Schaltung_Kondensatorentladung.jpg

--> Vermutlich fällt die Ladung Q(t) exponentiell ab
{$ Q(t)=Q_0*e^{-lambda*t} $}

--> Wir können diese Vermutung prüfen, indem wir diese Funktionfür Q(t) in die DGL für den Entladevorgeang einsetzen.
{$ Q'(t)+ 1/{RC}*Q(t)=0 $}
{$ Q_0*(-lambda)*e^{-lambda*t}+ 1/{RC}*Q_0*e^{-lambda*t}=0 $}
{$ lambda+ 1/{RC}=0 $}
{$ 1/{RC}=lambda $}

==> Offenbar ist die DGL nur erfüllt, wenn wir {$ lambda=1/{RC} $} setzen.

[++'''58.4 Entladefunktionen von Kondensatoren'''++]
-> Ist die Zeit t seit Beginn des Entladevorgangs vergangen, kann man die Ladung eines Kondensators über die folgende Funktion berechnen:
{$ Q(t)= Q_0 * e^{-1/(RC) *t}$} mit:
Q_0 : Anfangsladung zum Zeitpunkt t=0

R : Widerstand, über den der Strom fließt

C : Kapazität des Kondensators
-> Mit der Ladung fällt auch die Spannung {$ U(t) = (Q(t))/C $} ab:
{$ U(t) = Q_0/C*e^(-1/(RC)*t) = U_0*e^(-1/(RC)*t) $} mit
U_0: Spannung am Kondensator zum Zeitpunkt t=0
-> Wegen I=Q'(t) erhalten wir für die Stromstärke am Kondensator
{$ I(t)=-Q_0*1/(RC)*e^(-1/(RC)*t)=-Q_0/C*1/R*e^(-1/(RC)*t)=-U_0*1/R*e^(-1/(RC)*t)=-U_0/R*e^(-1/(RC)*t) $}
=> {$ I(t)=-I_0*e^(-1/(RC)*t) $} mit I_0 = (U_0)/R Anfangsstrom kurz nach Beginn der Entladung
Der Strom ist negativ, weil die Ladung den Kondensator verlassen und Q(t) daher abnimmt.
Changed lines 889-1284 from:
*Erhitzen (Curietemperatur: Stoff verliert magnetische Eigenschaften)
to:
*Erhitzen (Curietemperatur: Stoff verliert magnetische Eigenschaften)

!![[#MagMonopole]]{+63. Separation der Pole eines Magneten+}

Exp.: Wir versuchen jetzt den Nordpol eines Magneten von seinem Südpol zu trennen. Dazu nehmen wir eine magnetisierte Eisennadel aus 62. und teilen sie mit einer Zange in zwei Teile.

Attach:_geteilte_Magnetnadeln_.jpg

{+Ergebnis+}: Beide Teile haben nach wie vor Nord- und Südpol. Der Vorgang lässt sich beliebig oft wiederholen.

Wie lassen sich diese Effekte erklären? -> Modell Elementarmagnete

!![[#ModellElementarmagn]]{+64. Modell der Elementarmagnete+}

Man stellt sich vor, dass aus vielen, sehr kleinen und nicht weiter teilbaren Magneten, den sogenannten Elementarmagneten, besteht. Mit dieser Vorstellung lassen sich alle Effekte der Magnetostatik erklären:

Attach:_Elementarmagnet3_.jpg

In nichtmagnetisierten Stoffen sind die Elementarmagnete ungeordnet und heben sich in ihrer magneteischen Wirkung auf. Der ferromagnetische Stoff als Ganzer nildet damit keine Pole aus.

Attach:_Elementarmagnet2_.jpg

Streicht man den ferromagnetischen Stoff entlang einem Magneten, so richten sich die Elementarmagnete an den Polehn des Magneten aus und richten sich zum größten Teil aus.Dadurch verstärken die Elementarmagnete ihre Wirkung und der ferromagnetische Stoff bildet selbst Pole aus.

Attach:_Elementarmagnet_.jpg

Teilt man den magnetisierten Stoff, bleibt die Ausrichtung der Elementarmagnete bestehen. Beide Pole sind, wie in der Abbildung dargestellt, in beiden Bruchstücken vorhanden.

Durch Erhitzung oder starke mechanische Schläge kann die Ordnung der Elementarmagnete wieder zerstört werden. Der ferromagnetische Stoff hat dann seine Magnetisierung verloren. Er ist entmagnetisiert.

{+Wichtig ist:+} Es gibt keine magnetischen Monopole. Hierdurch unterscheiden sich Magnete von geladenen Körpern: Magnete haben immer zugleich einen Nord- wie einen Südpol.

!![[#KraftStromdurchflLeiter]]{+69. Kraft auf stromdurchflossene Leiter+}

Lassen sich die Kräfte auch bei bewegten Ladungen in Stromleitungen beobachten?

{+EXP.:+}
Wir lassen durch ein leichtbiegbares Metallband aus einem Kupferdrahtgeflecht einen Strom fließen und führen diese stromdurchflossene Leitung in ein Magnetfeld.

%width=200px% Attach:kraft_auf_stromfließenden_Leiter.jpg

{+Beobachtung und Ergebnis:+}
Man beobachtet,wie sich der Leiter senkrecht zum Magnetfeld und senkrecht zu der Bewegungsrichtung der Elektronen auslenkt.
Offenbar erfahren die fließenden Elektronen im Leiter die Lorentzkraft und übertragen diese Kraft auf den Leiter.

Mithilfe von Magnetfeldern lassen sich also auf einfache Weise durch elektrische Ströme mechanische Kräfte verursachen. Man nutzt dies bei Elektromotoren, die auf diesem Prinzip basieren.
\\
-> Eigenbau eines Lorentz-Motors


!![[#MagnFlussdichte]]{+70. Die magnetische Flussdichte - ein Maß für die Stärke magnetischer Felder+}
Wovon hängt die Größe der Kraft F auf einem stromdurchflossenen Leiter im Magnetfeld ab?

Sicher von der Stromstärke und der Leiterlänge im magnetichen Feld. Aber sicher auch von der "Stärke" des Magnetfeldes, die sich daher mithilfe dieser Kraft definieren lässt.

{+Exp.:+} Ein rechteckiger, stromdurchflossener Drahtrahmen befindet sich im Magnetfeld (Abb.). Da sich die Kräfte F1 und F2 ausgleichen, kann nur F gemessen werden.

%width=200px% Attach:kraft_stromdurchflossener_Leiter.jpg

{+ErgebnisDie Kraft ist proportional zum Strom I und zur Drahtlänge s: {$ F=I*s $}

Das heißt, {$ F/( I*s) $} ist so lange konstant, wie wir die Stärke des magnetischen Feldes konstant halten. Damit definieren wir als Maß für die Stärke des Magnetfeldes die Größe B:

{$ B = F/(I*s) $} Einheit: 1 Tesla = {$(1N)/(1A*1m $} = {$ 1T = 1 N/(Am) $}
B wird die {+magnetische Flussdichte+} genannt. Sie lässt sich mit sogennanten Hallsonden leicht messen.

-> {+Schlussfolgerung+}: Die Kraft auf einen Leiter der Länge s, welcher sich im Magnetfeld mit der Flussdichte B befindet und durch den der Strom I fließt, beträgt: {$ F = B*I*s $} wenn das Magnetfeld senkrecht zum Leiter verläuft.

!![[#Elektronenmassenbestimmung]]{+72. Bestimmung der Masse von Elektronen+}

Bestimmung der Masse durch ein Fadenstrahlrohr. Bisher haben wir in diesem Skript die Kenntnis von der Masse und der Ladung der Elektronen vorrausgesetzt. In diesem Abschnitt wird gezeigt, wie diese Masse bestimmt wird. Im nächsten Abschnitt geht es um die Ladung.

[++'''72.1Aufbau des Fadenstrahlrohrs'''++]

%width=300px% Attach:Aufbau72.jpg

Das Fadenstrahlrohr besteht aus einem kugelförmigen Glaskolben, in dessem Inneren eine Elektronenröhre (=Elektronenkanone) befestigt ist. Der Kolben wird von einem homogenen Magnetfeld durchsetzt, welches durch ein so genanntes '''Helmholtz-Spulenpaar''' erzeugt wird.

[++'''72.2 Geltende Zusammenhänge'''++]

Schaltet man die Elektronenröhre an, so sieht man durch eines der floreszierenden Gase der Elektronenröhre, dass die Elektronen auf einer Kreisbahn fliegen, desssen Radius '''r''' an einer Skala abgelesen werden kann.

%width=300px% %height=300px% Attach:Kraefte.jpg

Doch wie kommt diese Kreisbahn zustande?

=> Durch die Beschleunigungsspannung U'_B_' werden die Elektronen mit der Energie {$ W = q * U = e * U_B $} beschleunigt, wodurch diese Energie in kinetische Energie umgewandelt wird.
-->{$ 1/2 m_e * v_e^2 = e * U_B ==> v_e = sqrt{(2e*U_e)/(m_e)} $}

=> Im Magnetfeld wirkt die Lorentzkraft stehts senkrecht zum Feld und zur Bewegungsrichtung des Elektrons:
{$ F_L = e * B * v_e $}

=> F'_L_' zwingt die Elektronen auf eine Kreisbahn. Sie entspricht also der 'Zentripetalkraft' einer Kreisbewegung:
{$ F_z = m_e * (v_e^2)/r $}


[++'''72.3 Bestimmung der Masse m'_e_' eines Elektrons'''++]

Im nächsten Abschnitt wird die Elektronenladung '''e''' bestimmt. Sie beträgt: {$ e = 1,6022 * 10^(-19) C $}
Messbare Größen bei diesem Experiment sind: r, U'_B_' und B \\
Nun entspricht die Zentripetalkraft der Lorentzkraft, woraus folgt:
{$ F_z = F_L $} entspricht {$ m_e * (v_e^2)/r = e * B * v_e $} kann man kürzen zu: {$ m_e * (v_e)/r = e * B $}
Um m'_e_' zu bestimmen, setzen wir hier
{$ v_e = sqrt{(2e*U_B)/(m_e)} $} ein und quadrieren:

{$ (m_e)/r * sqrt{(2e*U_B)/(m_e)} = e* B $} wird zu:
{$ (m_e)/(r^2) * 2 * U_B = e * B $} woraus für m'_e_' folgt:
{$ m_e = (e * B^2 * r^2)/(2U_B) $}
Setzen wir die gemessenen Größen ein, erhalten wir die Elektronenmasse.
Literaturwert:
{$ m_e = 9,109 * 10^(-31) kg $}

!![[#Massenspektrograph]]{+74. Der Massenspektrograph+}

Mit einem Massenspektrograph werden die Massen von Molekülen und Atomen, beispielsweise zur Analyse von Lebensmitteln, bestimmt. Er besteht aus einem Wien'schen Geschwindigkeitsfilter, welcher nur Teilchen einer Geschwindigkeit hindurch lässt, einem magnetischen Ablenkfeld und einer Fotoplatte.

%width=400px% Attach:_Massenspektrograph_.jpg

[++'''74.1 Prinzip des magnetischen Ablenkfeldes'''++]

Durch Blende 2 gelangen die Ionen mit gleicher Geschwindigkeit v in das magnetische Ablenkfeld. Hier entspricht die Lorentzkraft der Zentripetalkraft der Kreisbewegung der Teilchen mit Radius r:

{$ F_z = F_L $} --> {$ m * (v^2)/r = q * B * U $}

Löst man nach m auf, erhält man für die Masse der Teilchen:

{$ m = (q * B * r)/v $}

Die Stärke des B-Feldes lässt sich mit Hall-Sonden messen, der Radius r kann man über die Einschlagstelle auf der Fotoplatte bestimmen, die Geschwindigkeit v kann über den Geschwindigkeitsfilter eingestellt werden und q kann als Vielfaches der Elementarladung durch logische Schlüsse ermittelt werden. Damit sind alle Größen zur Brechnung von m bekannt.


[++'''74.2 Der Wien'sche Geschwindigkeitsfilter'''++]

Der Geschwindigkeitsfilter besteht aus einem senkrecht gekreuzten, magnetischen und elektrischen Feld. Auf die positiv geladenen Ionen wirken beim Durchfliegen des Filters zwei Kräfte:
Eine geschwindigkeitsunabhängige Kraft durch das elektrische Feld E, in der Abbildung nach unten: {$ F_E = q * E $}

Und eine geschwindigkeitsabhängige Kraft durch das magnetische Feld B, in der Abbildung nach oben: {$ F_L = q * B * v $}


Den Geschwindigkeitsfilter können aufgrund der Blenden nur jene Teilchen passieren, die geradeaus fliegen. Das ist aber nur der Fall, wenn sich die nach oben wirkende Kraft F_L und die nach unten wirkende Kraft F_E gerade aufheben:
{$ F_L = F_E $} --> {$ q * B * v = q * E $}
Für v folgt: {$ v = E/B $}

Nur Teilchen mit dieser Geschwindigkeit werden durchgelassen. Bleibt B konstant, kann man über {$ E = u/d $} --> {$ v= u/(d*B) $} bestimmte Geschwindigkeiten durch anlegen der passenden Spannung U auswählen.

!![[#Halleffekt]]{+75.: Der Halleffekt+}
[++'''75.1'''++] Der Hall-Effekt kann dazu genutzt werden, auf einfache Weise die magnetische Flussdichte an Magnetfeldern zu messen. Er lässt sich anhand des dargestellten Blättchens erklären:
%width=300px% Attach:75_Hall-Effekt2.jpg
Es wird, wie gezeigt, von Elektronen durchflossen. Senkrecht zum Elektronenfluss wird es von einem Magnetfeld durchsetzt. Bewegen sich die Elektronen mit der Geschwindigkeit {$v_e$}, so erfahren sie die nach unten gerichtete Lorentzkraft {$F_L$}. Dadurch sammeln sie sich an der unteren Seite des Blättchens. Dort gibt es einen Elektronenüberschuss, während an der Oberseite ein Elektronenmangel entsteht. Die so entstandene Spannung {$U_H$} lässt sich messen. Fasst man obere und untere Blättchen als Kondensatorplatten auf, kann man daraus die Feldstärke {$ E = (U_H)/(h) $} berechnen. Diese bewirkt aber eine nach oben gerichtete elektrische Kraft {$ F_E = q * E = e * E $} auf die Elektronen. Wenn ghjkl so groß geworden ist, dass sie fdjkgn ausgleicht, stiegt die Spannung {$U_H$} nicht weiter an. Sie hat ihren Maximalwert erreicht. Es gilt dann:
{$ F_E = F_L $} ==> {$ e * (U_H)/(h) = e * B * v_e $}
woraus sich die folgende Hall-Spannung ergibt:
>>frame<< {$ U_H = h * B * v_e $}
>><<


Bei einer Hall-Sonde nimmt man ein Metall mit bekannter Driftgeschwindigkeit {$ v_e $} und errechnet mithilfe der gemessenen Hallspannung die magnetische Flussdichte:
{$ B = (U_H) / (h * v_e) $}
Bei bekanntem B-Feld lässt sich umgekehrt die Driftgeschwindigkeit der Elektronen {$ v_e $} berechnen.


[++'''75.2 Die Hall-Spannung in Abhängigkeit zur Dichte der Leitungselektronen'''++]
%width=300px% Attach:75_Hall_Blaettchenvolumen.jpg
Wir betrachten nun das eingezeichnetet Volumen V des Leiterblättchens. N sei die Anzahl der Leitungselektronen in diesem Volumen. Der Strom I lässt sich dann wie folgt ausdrücken:
{$ I = (Delta Q) / (Delta t) = (N * e) / (Delta t) = (N * e) / (Delta s) * (Delta s) / (Delta t) = (N * e) / (Delta s) * v_e $},
da {$ (Delta s) / (Delta t) $} die Driftgeschwindigkeit {$ v_e $} der Elektonen ist. Die Anzahldichte der Leitungselektronen ist nun als Anzahl pro Volumen definiert:
{$ n = (N) / (V) = (N) / (A * Delta s) $} ==> {$ N = n * A * Delta s $}
Diesen Ausdruck für N können wir in die obige Formel für die Stromstärke einsetzen.
{$ I = (n * A * Delta s * e) / (Delta s) * v_e = n * A * e * v_e $} ==> {$ v_e = (I) / (n * A * e) $}
Setzen wir die Formel für die Driftgeschwindigkeit in die Hallspannung ein, erhalten wir:
>>frame<< {$ U_H = h * B * v_e = (h * B * I) / (n * A * e) $}
>><<
Dies ist die Formel der Hallspannung in Abhängigkeit zur Dichte der Leitungselektronen. Mit ihr lässt sich besagt Dichte durch Umstellen bestimmen:
{$ n = (h * B * I) / (U_H * A * e) $}


!![[#MagFeldLangeSpule]]{+76.: Das Magnetfeld einer lang gestreckten Spule+}
Die Stärke des Magnetfeldes {+im Innern+} einer lang-gestreckten Spule hängt vermutlich ab von:
*der Stromstärke I
*der Windungsdichte {$ (N) / (l) $} (Anzahl Windungen pro Meter)
%width=250px% Attach:76_Lange_Spule.jpg
Diese Vermutungen lassen sich experimentell durch Spulen verschiedener Bauart bestätigen. Es lässt sich auch experimentell darstellen, dass B im Innern der Spule {+nicht+} vom Spulendurchmesser oder von der Länge l der Spule abhängt, wenn obige Größen konstant bleiben.

Vermutung über den quantitativen Zusammenhang:
{$ B = mu_0 * I * (N) / (l) $} mit der Proportionalitätskonstanten {$ mu_0 $}

==> '''Exp.:''' Die Formel wird durch Messungen an verschiedenen Spulen bestätigt. Die Proportionalistätskonstante {$ mu_0 $} kann aus den Messwerten bestimmt werden:
{$ mu_0 = 1,257 * 10^(-6) (Tm) / (A) $}
Man nennt sie magnetische Feldkonstante.

==> '''Exp.:''' Steckt man in die Spule einen ferromagnetischen Stoff, so verstärkt sich die Flussdichte um einen Faktor {$ mu_r $}. {$ mu_r $} ist eine Materialkonstante und wird {+Permeabilitätszahl+} gennant.
Allgemein gilt bei lang gestreckten Spulen:
>>frame<< {$ B = mu_0 * mu_r * I * (N) / (l) $}
>><<

!![[#InduktionLeiterstueck]]{+77. Induktion in einem geraden Leiterstück+}

Magnetische Felder üben auf stromdurchflossene Leiter Kräfte aus, soviel ist bereits bekannt: Legt man, wie dargestellt, auf zwei ebene, runde Metallstangen im Magnetfeld eine dritte, frei bewegliche und lässt durch diesen den Strom I fließen, so wirkt die Lorentzkraft auf die Elektronen und die bewegliche Stange wird mit der Kraft F = B*I*d beschleunigt.
Anwendungsgebiete sind Elektromotoren, die elektrische Energie in mechanische Energie wandeln.
Doch: Kann man auch umgekehrt mechanische in elektrische Energie wandeln?
=> Kehren wir das obige Experiment einfach um !

Wie seitlich dargestellt lassen wir jetzt eine Stativstange durch das Magnetfeld rollen und stellen fest: es entsteht tatsächlich eine Spannung Uind, die wir Induktionsspannung nennen.

Wie können wir ihr Zustandekommen erklären?
Zusammen mit der Stange bewegen sich auch die in ihr enthaltenen Leitungselektronen mit der Geschwindigkeit vs senkrecht zu den Magnetfeldlinien.
Dadurch wirkt auf sie aber die Lorentzkraft FL, weshalb sie sich nach unten bewegen. In der Folge lädt sich die untere Stange negativ und die obere positiv auf.
Hierdurch entsteht jedoch ein elektrisches Feld E, welches eine zur Lorentzkraft entgegen gesetzte elektrische Kraft auf das Elektron ausübt.
Die maximale Spannung Uind zwischen den Stangen wird erreicht, wenn die Kräfte im Gleichgewicht sind: (negatives Vorzeichen, da die Kraftrichtung entgegen gesetzt ist)

{$ F_(L)=F_(E) $}

{$ e*B*v_(s)=(-e)*E $} mit {$ E= U_(ind)/d $} folgt

{$ B*v_(s)= (-U_(ind))/d $}

=> {$ U_(ind)= (-B)*d*v_(s) $}


So lässt sich die Induktionsspannung aus B, d und vs berechnen.

!![[#MagnetischerFluss]]{+78. Magnetischer Fluss und Flussdichte und deren anschauliche Bedeutung+}

!!!! Magnetische Flussdichte:

Wir haben die magnetische Flussdichte B als Maß für die Stärke des magnetischen Feldes kennen gelernt. Stellen wir uns Magnetfelder durch Feldlinien repräsentiert vor, so sind sie dort besonders stark, wo die Feldlinien besonders dicht sitzen.
Der Begriff der Flussdichte entstammt nun genau dieser Vorstellung:
Denkt man sich eine Ebene, die senkrecht von einem homogenen Magnetfeld durchdrungen wird, so kann man sich die Flussdichte anschaulich als die Dichte der die Ebene durchdringenden Feldlinien ("Feldlinien pro Fläche") vorstellen.
Diese Vorstellung geht auf Michael Faraday (1791-1867) zurück.

!!!! Magnetischer Fluss:

Der magnetische Fluss hatte für Faraday die Bedeutung der Anzahl an Feldlinien, die eine bestimmte Fläche senkrecht durchdringen.
Der magnetische Fluss hängt damit nicht nur von der Stärke des Feldes (Der Flussdichte) ab, sondern auch von der Größe der Fläche: Je größer die Fläche, desto mehr Feldlinien durchdringen sie und desto größer ist somit der magnetische Fluss.

Während die Flussdichte mit B abgekürzt wird, erhält der magnetische Fluss das Symbol &#934; (großes griechisches "Phi").
Weil die Flussdichte als Feldlinien pro Fläche gedacht werden kann, erhält man die Anzahl der Feldlinien durch eine Fläche A durch die Multiplikation der Flussdichte mit der Fläche:
{$ Phi=B*A $}

Einheit: {$ [Phi]=T*m^2=N/(A_(m))*m^2=(N_(m))/A=J/(c/s)=J/C=V_(s) $}

!![[#InduktionSpule]]{+81. Induktionsspannung in Spulen+}

Bei einer Spule mit n-Windungen handelt es sich im Grunde um n hintereinandergeschaltete Leiterschleifen. Führt man eine solche Spule entsprechend in ein Magnetfeld ein, so addieren sich die Induktionsspannungen der einzelnen Windungen. FÜr eine Spule mit n Windungen gilt somit:
{$U_(Induktion)=-n* dot Phi $}

!![[#InduktionFlussdichtenaenderung]]{+82.: Induktion auch ohne Bewegung?+}
Die Formel {$ U_text(ind) = -n * dot Phi $} sagt aus, dass die Induktionsspannung in einer Leiterschleife von der Windungsanzahl und der Änderungsrate (= Ableitung)des magnetischen Flusses abhängt. Der magnetische Fluss änder sich, wenn sich die von dem Magnetfeld durchdrungene Fläche A der Leiterschleife ändert. Für eine konstante Flussdichte B folgt also wegen {$ dot Phi = B * dot A $}
{$ U_text(ind) = -n * B * dot A $} (bei konstanten B), wenn {$ dot A $} die Flächenänderung pro Zeit ist.
Der magnetische Fluss ändert sich aber auch, wenn sich die Flussdichte B ändert, während die Fläche A konstant bleibt - also dann, wenn wir die Spule nicht bewegen, sondern lediglich die Stärke des Magnetfeldes ändern.
Doch: Wird dann auch eine Spannung induziert? Gilt also:
{$ U_text(ind) = -n * dot Phi = -n * A * dot B $} (bei konstanter Fläche) ?
Prüfen wir diese Formel an einem Experiment!

'''Exp.:'''
==> Das sich ändernde Magnetfeld erzeugen wir durch eine lang gestreckte Spule, die innen hohl ist, indem wir den durch sie fließenden Strom ändern.
%width=250px% Attach:82_Induktionsspule_in_Feldspule.jpg
Wegen {$ B = mu_0 * (N) / (l) * I $} beträgt die Änderungsrate des Magnetfeldes {$ dot B = mu_0 * (N) / (l) * dot I $}, wenn der Strom mit der Rate {$ dot I $} vergrößert oder verkleinert wird. Um {$ dot I $} zu messen, lassen wir den Strom linear ansteigen. {$ dot I $} entspricht dann der Steigung im I-t-Diagramm.
==> Anschließend messen wir die Spannung {$ U_text(ind) $} an einer Spule, die in den Hohlraum der großen Erregerspule hineingeschoben wird und vergleichen die gemessene Spannung {$ U_text(ind) $} mit der errechneten:
{$ U_text(ind) = -n * dot Phi = -n * A * dot B = -n * A * mu_0 * (N) / (l) * dot I $}

==> {+Ergebnis:+} Der gemessene Wert für die Induktionsspannung stimmt mit dem berechneten Wert bestens überein.

{+Schlussfolgerung:+}
Auch durch die reine Änderung der Flussdichte wird eine Spannung - wie durch das Faraday'sche Induktionsgesetze vorhergesagt - in die ansonsten ruhende Leiterschleife induziert. Dies lässt sich {+nicht+} durch Lorentzkräfte erklären. {$ U_text(ind) = -n * dot Phi $} mit {$ Phi = A * B $} ist somit ein allgemeines Gesetz, aus dem die beiden Spezialfälle folgen:
==> {$ U_text(ind) = -n * B * dot A $} (bei konstantem B-Feld)
==> {$ U_text(ind) = -n * A * dot B $} (bei konstanter Fläche A)

!![[#ElWirbelfelder]]{+83. Elektrische Wirbelfelder+}
Verbinden wir den "+"-Pol einer Spannungsquelle U über einen Kupferdraht mit dessen "-"-Pol, so fließt deshalb ein Strom, wie über die Länge d des Drahtes die elektrische Feldstärke
{$ E=U/d $} die Elektronen mit der Kraft
{$ F=q*E $} von "-" nach "+" treibt.

%width=200px% Attach:kupferschleife_im_mag_Wechselfeld.jpg

%width=200px% Attach:Draht_E-feld.jpg

Gehen wir aber, wie oben dargestellt, von einem zu einem Ring geschlossenen, sich nicht bewegenden Kupferdraht aus, welcher sich in einem stärker werdenden Magnetfeld befindet, so können wir experimentell einen Kreisstrom feststellen, welcher aufgrund der Induktionsspannung U_ind fließt. Da sich der Kupferring nicht bewegt, können wir es nicht über die Lorentzkraft erklären, dass sich die Elektronen im Draht in Bewegung setzen. Wir müssen also annehmen, dass das sich verändernde Magnetfeld ein ringförmiges elektrisches Feld erzeugt, welches die Elektronen durch den Draht zieht. Da dieses Feld weder Anfang noch Ende hat, nennen wir es {+elektrisches Wirbelfeld+}. Seine Existenz können wir durch die sogenannte elektrodenlose Ringentladung prüfen.

%width=200px% Attach:>Elektrisches_Wirbelfeld.jpg

!![[#AnwendungenElWirbelfelder]]{+85. Anwendungen elektrischer Wirbelfelder+}

Elektrische Wirbelfelder haben zahlreiche Anwendungen. Zwei Beispiele:

'''=>Induktionsherde'''
Durch sich stark ändernde Magnetfelder wird im Boden der Kochtopfer ein starker Wirbelstrom induziert. Elektrische Energie wird wegen des Stroms dort in Wärme umgewandelt, wo sie gebraucht wird: Im Topf!

'''=>Transformatoren'''
Eine Primärspule erzeugt ein zeitlich schankendes Magnetfeld. Durch das elektrische Wirbelfeld wird in einer Sekujndärpule eine Spannung induziert, dessen Größe von der Anzahl der Windungen abhängt.

!![[#LenzEnergieerhaltung]]{+87. Der Zusammenhang zwischen Lenz'schem Gesetz & Energieerhalungssatz+}

Bei dem rechts gezeichneten Experiment handelt es sich um den selben Aufbau wie in Nr. 77:

Eine Metallstange rollt durch ein Magnetfeld, wodurch die Spannung U_ind= -B*d*v_s induziert wird.
Durch die Spannung fließt der Strom I durch die Lampe, welche mit der Leistung P= U*I leuchtet. Nach der Zeit t wurde also folgende elektrische Arbeit verrichtet:
{$ W_(el)=P*t=U_text(ind)*I*t=(-B)*d*v_(s)*I*t $}
Aber wo kommt diese Energie her? Wird sie tatsächlich aus dem Nichts erzeugt?
Der Strom fließt auch durch die vollende Metallstange. Damit erfährt sie die eingezeichnete Kraft {$ F= (-B)*I*d $} entgegen der Bewegungsrichtung.
Die mechanische Arbeit, die verrichtet werden muss, um die Geschwindigkeit v_s aufrecht zu erhalten, lässt sich über die Definitionsgleichung der Arbeit berechnen:
{$ W_(mech)=F*S=(-B)*I*d*v_(s)*t=(-B)*d*v_(s)*I*t $}
Hieraus lässt sich sehen, dass die aufgrund der Induktion verrichtete elektrische Arbeit der Arbeit entspricht, die am Stab mechanisch verrichtet werden muss, um die Bewegung aufrecht zu erhalten. Es handelt sich also nur um einen Umwandlungsprozess von mechanischer Energie in elektrische Energie.

Hiermit begründet sich auch die '''Lenz'sche Regel''':\\
Der induzierte Strom verursacht eine Kraft, die seiner Ursache (der Bewegung des Stabs durch das magnetische Feld) entgegen wirkt.

!![[#Induktivitaet]]{+90. Die Induktivität (oder auch Eigeninduktivität)+}
Können wir die "Eigeninduktionsspannung" auch berechnen?

Nun: I' gibt an, um wie viel Ampere der Strom pro Sekunde ansteigt. Weil Mu'_0_', Mu'_r_', N und l konstant sind, steigt B mit der Rate

{$ B' = Mu_0 * Mu_r * N/l *I' $}

an, woraus folgt (Wenn die Spulenfläche A konstant bleibt):

{$ dot Phi = A * B' = A * Mu_0 * Mu_r * I' * N/l $}

Da es sich bei der Feldspule auch um die Induktionsspule handelt, ist n = N, woraus für die Induktionsspannung nun folgt:

{$ U_text(ind) = -N * dot Phi = -Mu_0 * Mu_r * (N^2)/l * A * I' $}

Der Vorfaktor von I' besteht also nur aus konstanten Spuleneigenschaften. In der Physik nennt man den, von den Spuleneigenschaften abhängigen Faktor

{$ L = Mu_0 * Mu_r * (N^2)/l * A $}

auch die Induktivität (auch: Eigeninduktivität) der Spule. Je größer die Induktivität einer Spule ist, desto größer ist die in ihr induzierte Spannung bei gleichbleibender Änderungsrate des durch ihr fließenden Stromes:

{$ U_text(ind) = -L * I' $}

Einheit von L: {$ 1Henry = 1 (v_text(S'))/A $}


!![[#EinschaltvorgangSelbstinduktion]]{+91. Selbstinduktion - Der Einschaltvorgang+}

%width=300px% %height=300px% Attach:Selbstinduktion.jpg

Die Gesamtspannung U'(t) an der Spule setzt sich beim Einschaltvorgang aus der von außen angelegten Spannung U'_0_' und der Induktionsspannung zum Zeitpunkt t {$ U'_text(ind)(t) = -L * I'(t) $} zusammen:

{$ U(t) = U_0 + U_text(ind)(t) = U_0 -L * I'(t) $}

Die Spule hat den Widerstand R, über den sich mit U(t) der durch sie und den Stromkreis fließenden Strom I(t) berechnen lässt:

{$ I(t) = (U(t))/R = (U_0)/R - L/R * I'(t) $}

Hieraus erhalten wir die Differentialgleichung für den Einschaltvorgang.

{$ I(t) + L/R * I'(t) = (U_0)/R $}

Hat sich das Mu-Feld fertig aufgebaut und ist daher U'_text(ind)_' = 0, so fließt der maximale Strom {$ I_max = (U_0)/R $}. Mit dieser Bezeichnung erhalten wir für unsere DGL die entgültige Form:

{$ I(t) + L/R * I'(t) = I_max $}

Wir suchen jetzt eine Funktion für den Strom, welche die DGL erfüllt.

{+Experiment:+}
Um einen Ansatz für die Stromfunktion I(t) zu erhalten, zeichnen wir mit CASSY den Messwertgraphen aus obiger Schaltung:

{+Ergebnis:+} Ansatz:
{$ I(t) = I_max - I_max * e^(-R/L *t) $}
-->

{$ I_max - I_max * e^(-R/L * t) + L/R * ? * I-max * e^(-R/L * t) = I-max $}

/-I_max und vorklammern

{$ -I_max * e^(-R/L * t) + L/R * R/L * I_max * e^(-R/L * t) = 0 $}

/ :(I'_max_' * e^(-R/L *)

{$ -1 + L/R * R/L = 0 $}

/+1 / * R/L

1 = 1

--> Die DGL wird durch folgende Funktion gelöst:

{$ I(t) = I_max - I_max * e^(R/L * t) $}

Die Funktion gibt die Stromstärke zum Zeitpunkt t nach dem Einschalten wieder.

!![[#SchwingungenMathematisch]]{+99. Ideenfindundung: Wie kann man Schwingungen mathematisch beschreiben?+}

Um Schwingungen mathematisch erfass- und berechenbar zu machen, müssen wir wissen, mit welcher Funktion wir die Auslenkung y(t) des schwingenden Körpers beschreiben können.

{+Experiment:+} Wir erfassen die Schwingungen der Kugel über einen Faden mit dem CASSY und stellen die Auslenkung graphisch als Funktion der Zeit dar.

{+Ergebnis:+} Der Graph sieht sinusförmig aus. Vermutlich lässt sich also die zeitliche Auslenkung y(t) über eine Sinusfunktion beschreiben. Um diesen Ansatz prüfen zu können, müssen wir uns im nächsten Abschnitt zunächst noch einmal anschauen, wie der Sinus mathematisch definiert ist.

!![[#DefHarmonSchwingung]]{+105.Definition der haromonischen Schwingung+}

Eine Schwingung, die mit dem Ansatz
{$y(t)=y_(max)*sin(omega*t + phi_0)$}
beschrieben werden kann, nennt man harmonische Schwinugung. Generell sind alle Schwingungen harmonisch, deren Rückstellkraft proportional zur Auslenkung ist, wie beim Spiralfederpendel:
{$F=D*y$}
Solche Schwingungen lassen sich durch Differentialgleichungen der Form {$m*ddot y=-D*y$} beschreiben.
January 20, 2013, at 10:40 AM by sdl - Aktualisiert
Added lines 49-50:
# %red% [[#LadungsdichteUndFeldstaerke | Der Zusammenhang zwischen Flächenladungsdichte und Feldstärke]]
# %red% [[#Kondensatorkapazitaet | Die Kapazität eines Kondensators]]
Added lines 54-56:
# %red% [[#KondensatorReiheKapazitaet | Reihenschaltung von Kondensatoren - Betrachtung der Ersatzkapazität]]
# %red% [[#Grundeinheiten | Die SI-Grundeinheiten]]
# %red% [[#EFeldPunktladung | Das elektrische Feld einer Punktladung]]
Added line 58:
# %red% [[#VergleichCoulombGravi | Vergleich der Coulombkraft mit der Gravitationskraft+}
Added lines 60-75:
# %red% [[#SpannungZwPunkten | Spannung zwischen 2 Punkten im Coulomb-Feld]]
# %red% [[#CoulombPotential | Das Coulomb- Potential]]
# %red% [[#KugelKapazitaet | Die Kapazität einer Kugel]]
# %red% [[#DrahtPotential | Potential zweier mit Polen verbundenen Drähte]]
# %red% [[#StromBedeutung | Qualitative Bedeutung des elektrischen Stroms]]

# %red% [[#DefStromstaerke | Die elektrische Stromstärke]]
# %red% [[#ElLeistung | Begriff der elektrischen Leistung]]
# %red% [[#Leistungsberechnung | Berechnung der Leistung]]
# %red% [[#Kilowattstunden | Die Einheit Kilowattstunden]]
# %red% [[#Kondensatorenergie | Die in Kondensatoren gespeicherte Energie]]
# %red% [[#EnergiedichteEFeld | Die Energiedichte des elektrischen Feldes]]
# %red% [[#PotentialWiderstandKondensator | Potential an Widerstand und Kondensator]]
# %red% [[#KondensatorEntladung | Entladevorgang bei Kondensatoren]]
# %red% [[#HalbwertszeitEntladung | Berechnung von Halbwertszeiten]]
# %red% [[#FerromagnetischeStoffe | Ferromagnetische Stoffe]]
Changed lines 466-467 from:
-----------------------------------------
to:
!![[#LadungsdichteUndFeldstaerke]]{+31. Der Zusammenhang zwischen Flächenladungsdichte und Feldstärke+}
Experiment Nr. 28 zeigt, dass die Ladung auf einer Scheibe proportional zur Feldstärke steigt. Da die Fläche konstant bleibt, steigt auch die Flächenladungsdichte proportional zur Feldstärke E, wie man aus der Tabelle Nr. 28 erkennen kann.
{$sigma=epsi_0*E$}
Der Proportionaltätsfaktor {$epsi_0$} heißt "elektrische Feldkonstante". Sie kann mit den Werten aus Nr. 28 berechnet werden.
{$epsi_0=sigma/E=8,85*10^(-12) (C/(m^2))/(N/C)=8,85*10^(-12) (C^2)/(Nm^2)$}

!![[#Kondensatorkapazitaet]]{+32. Die Kapazität eines Kondensators+}
Wie viele Ladungen passen auf einen Plattenkondensator?
{$Q=sigma*A=epsi_0*E*A=epsi_0*U/d*A
=> Q=epsi_0*A/d*U ->C=epsi_0*A/d => Q=C*U$}
Von der Größe {$epsi_0*A/d$} hängt es ab, wie viele Ladungen bei fester Spannung auf den Kondensator passt. Sie heißt deshalb auch {+Kapazität+} des Kondensators C. Einheit: {$ 1Farad=(1C)/(1V)$}
Eine Kapazität von 1 Farad bedeutet,dass der Kondensator bei einer Spannung von 1V die Ladung 1C speichert.
Wann wird die Kapazität möglichst groß?
{$C=epsi_0*A/d$} =>Wenn A möglichst groß und d möglichst klein wird.

-------
-----------------------------------------
Changed lines 529-557 from:
to:
!![[#KondensatorReiheKapazitaet]] {+37.Reihenschaltung von Kondensatoren - Betrachtung der Ersatzkapazität+}}

Welche Kapazität müsste ein Ersatzkondensator haben, der n parallel geschaltete Kondesatoren mit den Kapazitäten {$C_1, ...,C_n$} ersetzt?
%width=400px% Attach:37.jpg
Entzieht das Netzgerät der Platten ganz links Elektronen, so wird sie positiv (+Q) geladen. Aufgrund von Influenzen werden wegen der positiv geladenen linken Platte Elektronen auf die Platte gegenüber gezogen, wodurch sie die gleichgroße negative Ladung -Q trägt. Die Elektronen kommen von der linken Platte des Nachbarkondensators, welcher die gleiche positive Ladung +Q trägt wie die Platte ganz links. Und so weiter.\\
-> Jeder Kondensator enthält die gleiche Ladungsmenge.
Wegen der sich unterscheidenden Kapazitäten sind damit aber die Teilspannungen unterschiedlich:\\
{$U_1 = Q/(C_1), U_2 = Q/(C_2), ..., U_n = Q/(C_n)$}
Daraus folgt für die Ersatzkapazität {$U_(Ges)=Q/(C_(Ges))$}:\\
{$1/C=(U_(Ges))/Q=(Q/(C_1)+Q/(C_2)+...+Q/(C_n))/Q=1/(C_1)+(1)/(C_2)+...+(1)/(C_n)$}
Bei einer Reihenschaltung von Kondesatoren entspricht der Kehrwert der Ersatzkapazität dem Kehrwert der Einzelkapazitäten.\\

!![[#Grundeinheiten]] {+38. Die SI-Grundeinheiten+}}
Die SI-Grundeinheiten wurden wie folgt festgelegt:\\
Meter (m), Sekunde (s), Kilogramm (kg), Ampere (A)\\
Alle Einheiten lassen sich aus diesen Grundeinheiten zusammensetzen:\\
->Kraft: Wegen {$F=m*a$} ist {$1N=kg*(m^2)/(s^2)$}\\
->Energie: Wegen {$W=F*s$} ist {$1J=1N*m=kg(m^2)/(s^2)$}\\
->Ladung: Wegen {$&#916;Q=I*&#916;t$}(später mehr) ist {$1C=A*s$}\\
->Spannung: Wegen {$U=(W)/(q)$} ist {$1V=(J)/(C)=(kg*m^2)/(A*s^3)$}\\
->Kapazität: Wegen {$C=(Q)/(U)$} ist {$1F=(C)/(V)=(A^2*s^4)/(kg*m^2)$}\\

!![[#EFeldPunktladung]] {+39. Das elektrische Feld einer Punktladung+}
Punktladungen kommen überall in unserer Welt vor, z.B. Atomkerne oder Elektronen. Wir untersuchen jetzt aber das Feld, welches die Elektronen auf ihren Bahnen um die Atomkerne hält.
Aus dem Versuch mit Grießkörnern wissen wir, dass die Feldlinien radial nach außen gehen. Doch wie kann man die Stärke des Feldes im Abstand r von der Punktladung Q berechnen?\\
->Beim Verdoppeln der Ladung Q verdoppelt sich auch die Anzahl der Feldlinien. Die Feldstärke um Q ist also wahrscheinlich proportional zu Q.\\
->Die Oberfläche einer Kugel vervierfacht sich wegen {$A=4*pi*r^2$} bei doppeltem Abstand. Die gleiche Anzahl Feldlinien verteilt sich im doppelten Abstand auf die vierfache Fläche. Daher ist die Feldstärke im doppelten Abstand nur noch 1/4 so groß.\\
=>{$E=k*(Q)/(r^2)$} wobei k ein Proportionalitätsfaktor ist.
Added lines 564-569:
!![[#VergleichCoulombGravi]] {+41. Vergleich der Coulombkraft mit der Gravitationskraft+}

{$ F_C=K*{q_1*q_2}/{r^2} $}

{$ F_G=G*{m_1*m_2}/{r^2} $}
Changed lines 593-762 from:
{$=>W_E=(q*Q)/(4Piepsi_0)*(1/(r_1)-(1)/(r_2))$}
to:
{$=>W_E=(q*Q)/(4Piepsi_0)*(1/(r_1)-(1)/(r_2))$}

[[#SpannungZwPunkten]] {+43. Spannung zwischen 2 Punkten im Coulomb-Feld+}
Die Spannung ist definiert als {$ U=W/q $}
Für die Spannung zwischen zwei Punkten im Coulomb-Feld, die den Abstand r_1 bzw r_2 von der Zentralladung Q entfernt liegen folgt: {$ U_(r_1r_2)=W/q=Q/(4 pi epsi_0) * (1/(r_1) - 1/(r_2))$}

!![[#CoulombPotential]] {+44 Das Coulomb- Potential+}
Als Coulomb- Potenzial bezeichnet man die Spannung relativ zu einem unendlich weit entferneten Punkt im Feld einer Zentralladung:\\
'''Für r_2 -> &#8734; läuft 1/r_2 -> 0'''\\
[[<<]]
Damit folgt für das Potential eines Punktes mit Abstand r_1 zur Zentralladung Q

'''{$phi=Q/{4*pi*epsi_0}*1/(r_1)$}'''

[[#KugelKapazitaet]] {+45. Die Kapazität einer Kugel+}

Wegen {$ U_{oo}=Q/(4 pi epsi_0 r) $} und {$ C=Q/U $} folgt für die Kapazität einer Kugel: {$ C= pi epsi_0 epsi_r r $}

!![[#DrahtPotential]] {+46. Potential zweier mit Polen verbundenen Drähte+}

Der Versuchsaufbau: \\
\\
Wir verbinden zwei Drahtstücke mit unterschiedlichen Polen einer Spannungsquelle. Die beiden Spitzen der Drähte sind sich sehr nahe, berühren sich jedoch nicht. \\
Es wäre ein normaler kleiner Stromkreislauf, wenn sich die Spitzen berühren würden. \\

%width=450px% Attach:46_Feld_zwischen_Draehten.jpg \\

[[<<]]

Wie man auf der Skizze bereits sehen kann, bildet sich ein Feld zwischen den beiden Drahtspitzen. [[<<]] [[<<]]
Aus folgendem Grund: \\
Die Spannungsquelle entzieht dem Draht am positiven Pol Elektronen und 'pumpt' diese auf den Draht am negativen Pol.
Dadurch laden sich die Drähte unterschiedlich und an der Spitze entsteht ein elektrisches Feld.
Potential ist die Spannung zwischen zwei Punkten zu einem (willkürlich festgelegten) Nullpunkt. \\

%width=500px% Attach:47_Feld_zwischen_Draehten.jpg

\\
Das elektrische Feld stellt sich als 'Potentialgefälle' zwischen den beiden unterschiedlich geladenen Drähten heraus. Diese Erfahrung haben wir auch schon bei Untersuchungen mit 2 Plattenkondensatoren gemacht.

!![[StromBedeutung]] {+47. Qualitative Bedeutung des elektrischen Stroms+}
[[<<]]
Führt man nun die beiden Drahtenden aus 46. zusammen so bekommen die Elektronen die Möglichkeit durch beide Drahtstücke hindurchzufließen, vom einen zum anderen Pol. Ein Kurzschluss gewissermaßen. \\
Für das Potential bedeutet das, dass es kein Gefälle mehr DURCH das Feld geben kann. Das Feld hat sich bei der Zusammenführung der beiden Drahtenden aufgelöst. Trotzdem gibt es an der Stromquelle eine Potentialdifferenz zwischen dem positiven und dem negativen Pol. \\


%width=350px% Attach:Qualitative_Bedeutung_des_Stroms.jpg

[[<<]]
Anscheinend steigt das Potential über den kompletten Draht gleichmäßig linear. \\
Die fließenden Elektronen stoßen dabei ständig mit Atomrümpfen zusammen. Ein Teil ihrer Arbeit W = U * q wird dabei in Wärmeenergie umgewandelt.
Dadurch erhöht sich die Temperatur des gesamten Drahtes nach einer Weile fängt er an zu glühen. [[<<]] [[<<]]
Es gilt:
Fließt die Ladung q über den Draht wird die Energiemenge U * q in Wärmeenergie umgewandelt.

[[#DefStromstaerke]] {+48. Die elektrische Stromstärke+}
{$Stromstaerke=(Ladungen)/(Zeit)$}
Für die durchschnittliche Stromstärke im Zeitraum {$ Delta t $} gilt {$ I = (Delta Q)/(Delta t)$}
Bei konstanter Stromstärke kann diese Formel immer verwendet werden.
Für die momentane Stromstärke gilt: {$I = Q$}
Einheit: 1 Ampere = 1Coulomb / 1Sekunde
{$ 1A = (1C)/(1S)$}

[[#ElLeistung]] {+49. Begriff der elektrischen Leistung+}
Eine Lampe wird an eine Stromquelle mit U = 6V angeschlossen. Es wird ein Strom um 0,5 A gemessen! Wie viel elektrische Energie wird an der Lampe in Wärme- und Lichtenergie umgewandelt?
*0.5A bedeutes ist fließt in 1s die Ladung -0,5C von - nach +
*Damit verrichtet das Feld in jeder Sekunde die Arbeit W_{E}=U*Q, also {$ W_{E}=6V*0.5C=3J $} in jeder Sekunde
*nach der Zeit {$ Delta t $} wird die Arbeit {$ Delta W= U*I* Delta t $} verrichtet
{+ Definition: +}
Die Arbeit, die pro Zeit verrichtet wird, nennen wir Leistung {$ Leistung=(Verrichtete Arbeit)/(Zeit) $} {$ P=(Delta W)/(Delta t) $} Einheit: 1Watt=1Joule/1Sekunde \\
\\
Leistet eine Glühlampe 60 Watt, so bedeutet dies, dass sie in jeder Sekunde 60 Joule elektrische Energie in Wärme- und Lichtenergie umwandelt.

[[#Leistungsberechnung]] {+50.Berechnung der Leistung+}

In einer Glühbirne wird in der Zeitspanne &#916;t die Arbeit &#916;W{$ W= U*I*Delta t $}verrichtet. Für die Leistung gilt somit wegen {$ P=(Delta W)/( Delta t) $}:
{$ P=U*I$}
BSP.: Leistung einer Lampe, eines Föns, Laptops,... bestimmen.

[[#Kilowattstunden]] {+51. Die Einheit Kilowattstunden+}

Eine Kilowattstunde (kurz 1kWh) entspricht der Arbeit,die bei einer Leistung von 1000 Watt in einer Stunde verrichtet wird.

[[<<]]

1kWh = 1000 Watt*3600 Sekunden = 3600000 Joule = 3,6 Mio. Joule

In Kraftwerken erzeugt man die elektrische Energie 1kWh aus 0,3kg Steinkohle; 1,5kg Braunkohle; 4m^3 Wasser bei 100m Höhenunterschied oder 0,05mg Uran 235 im Kernkraftwerk.

!![[#Kondensatorenergie]]{+55.: Die in Kondensatoren gespeicherte Energie+}

Bräuchte man zum Laden eines Kondensators immer die gleiche Spannung U, könnte man leicht ausrechnen, wie viel Energie auf ihn gespeichert wäre, wenn man die Ladung Q auf ihn lädt: {$ W=U*Q $}
Dies entspricht im Diagramm der Fläche unter Graphen. %width=300px% Attach:55_Arbeit_Spannung_Konstant.jpg

Allerdings benötigt man zum Laden eines Kondensators eine um so größere Spannung, je mehr Ladung sich auf ihm befindet. Wegen {$ Q=C*U $} benötigt man die Spannung {$ U=(1)/(C)*Q $}, die linear mit Q anwächst.
Auch hier entspricht die zum Laden benötigte Arbeit der Fläche des Graphen im QU-Diagramm: {$ W=(1)/(2)*CU^2 $}
%width=300px% Attach:55_Arbeit_Spannung_Steigend.jpg

>>frame<< Die gespeicherte Energie in einem mit der Spannung U geladenen Kondensator ist {$ W = (1)/(2) * CU^2 $}
>><<

[[#EnergiedichteEFeld]] {+56. Die Energiedichte des elektrischen Feldes+}

Faraday ging davon aus, dass die Energie eines Kondensators im Feld des Kondensator gespeichert ist und somit den Zwischenraum zwischen den Platten durchsetzt:

Attach:Kondensatorfeld.jpg

{$ W=1/2*C*U^2 = 1/2*epsi_0*epsi_r*(A)/(d)*E^2*d^2 = 1/2*epsi_0*epsi_r*E^2*V $}
mit dem vom Feld durchdrängten Volumen V

Die Energiedichte des elektrischen Feldes gibt in diesem Zusammenhang an, wie viel Energie pro Volumeneinheit im Feld gespeichert ist:
{$ rho_(el)= (W)/(V) = 1/2*epsi_0*epsi_r*E^2 $}

[[#PotentialWiderstandKondensator]] {+57. Potential an Widerstand und Kondensator+}

Attach:_Potential_.jpg

Das Potential entspricht der Spannung relativ zu einem Bezugspunkt. Wie aus der Abbildung deutlich wird, haben die Potentiale von Widerständen und Plattenkondensatoren einen ähnlichen Verlauf.
Unterschied: Beim Widerstand fließen Ladungen. Damit verrichtet das el. Feld dort die Leistung
{$ -> P=U*I $}beim Kondensator nicht!


!![[#KondensatorEntladung]] {+58. Entladevorgang bei Kondensatoren+}

[++'''58.1 Potential bei der Kondensatorenentladung '''++]

Kondensatorenenladungen spielen nahezuin jedem Bereich der Technik eine Rolle. Insbesondere dort, wo sie als Energiespeicher dienen. Wir entladen den Kondensator über einen Widerstand R. Das Potential hat dabei folgende Form:
%width=200% Attach:58_Entladung_Potential.jpg
Die Ladungen flißen dabei von der negativ geladenen Platte über den Wide4rstand zu positiv geladenen Platte. Dabei verliert der Kondensator an Ladung, womit seine Spannung sinkt. Damit fällt auch das Potential ab, was durch den Pfeil dargestellt wird.

[++'''58.2 Aufstellen einer Differentialgleichung'''++]

Da die Potentialdifferenz von links nach rechts beim Kondensator die gleiche ist, wie von rechts nach links beim Widerstand, gilt für die anliegenden Spannungen U_C = -U_R
Wir bringen diese Gleichung nun auf eine Form, die nur von den Kenngrößen C und R, sowie von der Ladung Q(t) auf dem Kondensator und ihrer Änderungsrate Q'(t) abhängt.
{$Q = C * U_C -> U_C = Q/C = 1 / C * Q(t)$}
{$R = U_R / I -> U_R = R * I = R * Q'(t)$}
Aus {$U_C = -U_R$} wird damit
{$1 / C * Q(t) = -R * Q'(t)$}
==> {$Q'(t) + 1 / (R * C) *Q(t) = 0$}
Dies ist eine Differentialgleichung (DGL). Q(t) ist eine Funktion, die angibt, wie viel Ladung nach der Zeit t noch auf dem Kondensator ist. Durch die DGL wissen wir: Setzt man Q(t) und seine Ableitung in die linke Seite der Gleichung ein, so muss Null herauskommen.

------------------------------------


!![[#HalbwertszeitEntladung]]{+59.: Berechnung von Halbwertszeiten+}
Als Halbwertszeit bezeichnet man die Zeit, die beim Entladevorgang eines Kondensators verstreicht, bis nur noch die Hälfte der Ladungen auf dem Kondensator sind. Mit der Funktion Q(t) ausgedrückt gilt für die Halbwertszeit t_h:

{$ Q(t_h) = 1/2 Q_0$}
{$ Q_0 * e^(-1/(R C)*t_h) = 1/2 Q_0 $}
... nach Division durch Q_0 folgt:
{$ e^(-1/(R C)*t_h) = 1/2 $}
Anwendung des Logarithmus Naturalis:
{$ -1/(R C)*t_h = ln(1/2) $}
{$ t_h = - R C * ln(1/2) = - R C * (ln(1)-ln(2)) = -R C * (0-ln(2)) $}
Und es folgt für die Halbwertszeit t_h:
{$ t_h = R C ln(2) $}

!![[#FerromagnetischeStoffe]]{+62.: Ferromagnetische Stoffe+}
Neben den Kräften zwischen Magneten, ziehen Magneten auch andere Stoffe an. Diese sind Eisen(Fe), Kobalt(Co) und Nickel(Ni). Man nennt diese Stoffe deshalb ferromagnetische Stoffe*. Andere Stoffe werden von Magneten nicht angezogen.

"Ferro" kommt von der lateinischen Bezeichnung "Ferrum" für Eisen. Ferromagnetische Stoffe haben also gleiche/ähnliche Eigenschaften wie Eisen. Wie man sieht, sind Nickel und Kobalt ebenso magnetisierbar-genau wie Eisen.

Diese Stoffe lassen sich demnach auch magnetisieren, indem man sie immer in die selbe Richtung an einem Magneten vorbei reibt. Die im Körper/Stoff enthaltenen Elementarmagneten orientieren sich an dem Magntet und richten sich geordnet aus. (%red%Nordpol%black%-%green%Südpol%black%-%red%Nordpol%black%-%green%Südpol%black%-%red%Nordpol%black%-.......%green%Südpol%black%).
Lässt sich ein Körper leicht magnetisieren, bzw. lassen seine Elementarmagneten leicht ausrichten, so bezeichnet man diesen Stoff als magnetisch weich.

{+Allgemein gilt:+} Körper, die von Magneten angezogen werden, sind auch selbst magnetisierbar.

Magneten verlieren ihre Magnetisierung durch der Verlust der Ausrichtung der Elementarmagneten. Dies geschieht durch:
*mechanische Erschütterung
*Erhitzen (Curietemperatur: Stoff verliert magnetische Eigenschaften)
November 16, 2012, at 09:09 PM by sdl - Autoren hinzugefügt.
Changed line 11 from:
Charmaine Guse, Dominik, Eva Noble, Laura Schneiderbauer, Lennart, Maximilian, Pascal, Patrick Kramer, Tobias, Vanessa, Victoria Liebel, Vincent, Yannik
to:
Charmaine Guse, Dominik K., Eva Noble, Laura Schneiderbauer, Lennart, Maximilian, Pascal, Patrick Kramer, Tobias, Vanessa, Victoria Liebel, Vincent, Yannik, Katharina, Christian D., Melissa, Dominik L.
Added line 17:
Added lines 48-53:
# %red% [[#Flaechenladungsdichte |Die Flächenladungsdichte]]
# %red% [[#IsolatorenMikro |Mikroskopische Betrachtung von Isolatoren in elektrischen Feldern]]
# %red% [[#KondensatorParallel |Parallelschaltung von Kondensatoren]]
# %red% [[#KondensatorReihe |Reihenschaltung von Kondensatoren]]
# %red% [[#CoulombKraft |Die Coulomb-Kraft]]
# %red% [[#CoulombTransportarbeit |Transportarbeit zwischen 2 Punkten im Coulomb-Feld]]
Changed lines 79-81 from:
{+Ergebnis+}:
Wird ein Elektroskop geladen, so stößt sich der frei bewegliche Zeiger aufgrund der gleichnamigen Ladung vom Elektroskopstab ab.
to:
{+Ergebnis+}: [[<<]]
Wird
ein Elektroskop geladen, so schlägt der Zeiger aus!
[[<<]]
{+Erklärung+}:[[<<]]
Wird das Elektroskop positiv geladen, bedeutet dies, dass ihm Elektronen entzogen wurden. Es gibt dadurch mehr positive Ladungen im gesamten Metall.
Das gleiche geschieht, wenn das Elektroskop negativ geladen wird. Diesmal befinden sich mehr Elektronen im Metall.
Der Elektroskopstab und der Zeiger sind gleich geladen und da sich gleichnamige Ladungen abstoßen schlägt der Zeiger aus.
Durch ein Elektroskop kann man also die elektrische Ladung nachweisen, jedoch nicht das Vorzeichen der aufgebrachten Ladung.
Changed lines 92-99 from:
Mit dem Elektroskop kann man folgendes feststellen :

=> Es gibt Leiter, die Ladungen weiterleiten, wie zum Beispiel Eisen, Kupfer, Graphit, usw
.

=> Es gibt Nichtleiter,
die Ladungen nicht weiterleiten können, wie zum Beispiel Plastik, Styropor, glas, usw.

=> Es gibt Stoffe, die Ladungen nur bedingt leiten, also lediglich schwach
, wie zum Beispiel Wasser und andere Lösungen.
to:

Körper/Stoffe besitzen die Eigenschaft der elektrischen Leitfähigkeit. Die Leitfähigkeit basiert auf mehr oder weniger beweglichen/freien Elektronen in einem Stoff.

Man klassifiziert:

1
. Leiter: Leiter können die Ladungen weiterleiten. Dazu müssen beweglich Ladungsträger in einem Körper vorhanden sein, die Ladung transportieren können. Zu dieser Stoffgruppe zählen die Metalle, wie zum Beispiel Eisen, Kupfer, oder Zink (etc.). Aber auch einige nicht metallische Stoffe können Ladungen leiten. Dazu gehören unter anderem Graphit oder Aktivkohle.


2. Schlechte Leiter: Stoffe können die Ladungen nur bedingt leiten, also lediglich schwach, wie zum Beispiel Wasser und andere Lösungen.
Andererseits fallen in diese Kategorie auch Stoffe,dieelektrischen Strom z.B. in Abhängigkeit der Temperaturleiten; sprich Leiter und Isolatoren sein können.


3. Nichtleiter/Isolatoren: Isolatoren können die Ladungen nicht weiterleiten, aufgrund ihrer atomaren/molekularen Struktur. Die Valenzelektronen liegen bei diesen Stoffen nicht "frei" vor, sondern befinden sich lediglich auf der Valenzelektronenschale des Atoms. Durch den positiven Kern werde sie auf dieser Bahn gehalten und können im Gegensatz zu den Leitern keine Ladungen transportieren. Typische Isolatoren sind Plastik, Styropor, Glas, usw.
Man findet diese z.B. an Stromkabeln, so kann man auch bei anliegender Spannung das Kabel anfassen ohne mit dem Strom in Berührung zu kommen
.
Changed lines 155-158 from:
Als direktes Anwendungsbeispiel.
Auf einem ähnlichen Prinzip beruhend: Der Bandgenerator, Influenzmaschine aus Sammlung
to:


Durch Zufall befinden sich mehr Wassertröpfchen mit negativ Ladung
im rechten Wasserhahn. Diese Ladungen werden an das Röhrchen abgegeben.
[[<<]]--> Und zwar aus folgendem Grund: Wenn der Strahl in dem Röhrchen zu Tropfen zerreißt, müssen sich auch die zufälligen Ladungen aufteilen. Dabei kann es ein, dass ein Elektronen ins Röhrchen übergeht.
[[<<]]Dadurch läd sich diese negativ auf und da sie mit dem linken unteren Becher verbunden ist, werden die Ladungen auf diese beiden gleich verteilt.[[<<]] Wenn nun rechts oben das Röhrchen negativ geladen ist, dann gibt es einen INFLUENZEFFEKT und es werden Elektronen noch aus dem Wasserstrahl zurück in die Leitung getrieben. Dadurch fallen vermehrt positive Ladungen als Tropfen aus dem Hahn und diese landen dann auch in dem rechten unteren Becher.
[[<<]]Dieser läd sich also gleichfalls positiv auf. Genauso, wie das (durch das Kabel verbundene) obere linke Röhrchen. Auf der anderen Seite der Konstruktion, auf der linken Seite passiert also alles gleichzeitig wie rechts nur genau "umgekehrt". [[<<]]
Dies ist ein SELBSTVERSTÄRKENDER Effekt, der durch die Ladungstrennung unglaublich hohe Spannungen erzeugen kann.

[[<<]] So kann man, nach etwas Zeit zuerst zusehen, wie die Tröpfchen so sehr abgelenkt werden, dass sie garnicht mehr unten ankommen und dann etwas später sogar noch beobachten, dass sie wieder "nach oben" fliegen weil die Feldstärke eine größere Kraft auf sie auswirkt als die Gravitation.

[[<<]] Tipp zum "Selberbauen": Die Maschine würde auch ohne eine Startladung funktionieren, jedoch braucht man dafür etwas mehr Zeit. Wenn man sich nicht so sehr auf die Folter spannen will, gibt man einfach einem Becher eine geringe Startladung...
Das kann sogar eine durch ein Katzenfell erzeugte Ladung sein.[[<<]] --> wenig genügt bereits.

[[<<]]Auf einem ähnlichen Prinzip beruhend: z.B der Bandgenerator [[<<]][[<<]][[<<]]
Auch interessant: %blue% [[Attach:10_Kelvinmaschine.mp4| VIDEO ZUR KELVIN-MASCHINE]]

[[<<]]


%width=520px% Attach:10_Kelvinmaschine_Photo.jpg

Added lines 432-522:


!![[#Flaechenladungsdichte]]{+30. Die Flächenladungsdichte+}

Die Flächenladungsdichte ist ein Maß dafür, wie dicht die Ladungen auf einer Fläche sitzen

{$ Flaechenladungsdichte = (Ladung)/(Flaeche) $}
{$ o= Q/A $} Einheit: c/m²
Während due Ladungsmenge auf einer Platte von ihrer "Größe" abhängt, ist die Flachenladungsdichte von der dieser Größe unabhängig.
Bei gleicher Fläche gilt:
-> Je größer die Flächenladungsadichte, desto größer die Ladung Q.

-----------------------------------------

!![[#IsolatorenMikro]]{+34. Mikroskopische Betrachtung von Isolatoren in elektrischen Feldern+}

Weshalb erhöht sich die Kapazität eines Plattenkondensators, wenn man in sein Feld einen Plattenkondensator schiebt?

%width=200px% Attach:atomeisolatoren.jpg

Die Atome der Isolatoren bestehen aus einem positiv geladenen Kern (+) und einer negativ geladenen Hülle um den Kern herum (grau schraffiert).
Zwar sind die Elektronen der Hülle an ihre Atome gebunden, allerdings verschieben sich die Elektronenwolken leicht zur positiven Platte. Dadurch wird die in der Abbildung linke Isolatorseite negativ, die rechte positiv geladen. Diese Ladungen ziehen zusätzliche Ladungen auf die Platten.
Das durch die Polarisationsladungen des Isolators entstehende innere Feld schwächt im Isolator das durch den Kondensator verursachte Feld ab.

%width=200px% Attach:34_isolatoratome.jpg

!![[#KondensatorParallel]] {+35. Parallelschaltung von Kondensatoren+}

%width=200px% Attach:parallelschaltungkondensatoren.jpg

Liegt an n parallel geschalteten Kondensatoren die Spannung U an, so entspricht die Gesamtladung der Summe der Einzelladungen.
{$ -> Q = Q_1+Q_2+...+Q_n = C_1*U+C_2*U+...+C_n*U $}


Wollte man diese Kondensatoren durch einen einzigen "Ersatzkondensator" ersetzen, so müsste dieser also die folgende Kapazität haben:
{$ -> C = Q/U = (C_1*U+C_2*U+...+C_n*U)/U = C_1+C_2+...+C_n $}

Die Ersatzkapazität von parallel geschalteten Kondensatoren ist somit die Summe der Einzelkapazitäten.

!![[#KondensatorReihe]] {+36. Reihenschaltung von Kondensatoren - Betrachtung der Einzelspannungen+}

%width=200px% Attach:reihenschaltungkondensatoren.jpg

Bei [+1+] wird beim Transport der Ladung q von der einen Platte zur anderen die Arbeit
{$ -> W_(Ges) = U_(Ges)*q $}
verrichtet. Die gleiche Arbeit muss wegen der gleich großen Spannung verrichtet werden, wenn bei [+2+] eine gleich große Ladung z.B. von der linken Platte des linken Kondensators über den mittleren Kondensator zur rechten Platte des rechten Kondensators transportiert wird. Für die einzelnen Transportarbeiten der drei Platten gilt demnach:

{$ -> W_(Ges) = W_1+W_2+W_3 $}

Betrachtet man die Spannung als Arbeit pro Ladung, so erhält man:

{$ (W_(Ges))/q = (W_1)/q+(W_2)/q+(W_3)/q -> U_(Ges) = U_1+U_2+U_3 $}

Allgemein gilt bei n Kondensatoren:

{$ -> U_(Ges) = U_1+U_2+U_3+...+U_n $}

'''--> Hier fehlt noch Text!'''

---------------------------------------

!![[#CoulombKraft]] {+40. Die Coulomb-Kraft+}
Die Zentralladung q1 verursacht das elektrische Feld{$ E=1/(4Piepsi_0) *(q1*q2)/(r^2)$} Welche elektrische Kraft wirkt zwischen ihr und einer zweiten Ladung q2?
-> Aus {$F=q2*E$} folgt:
{$F=1/(4Piepsi_0) * (q1*q2)/r^2 $}
Diese Kraft zweier Zentralladungen im Abstand r zueinander nennt man Coulomb-Kraft.

!![[#CoulombTransportarbeit]] {+42. Transportarbeit zwischen 2 Punkten im Coulomb-Feld+}
-> Vorgehen im homogenen Feld:
%width=400px% Attach:Transportarbeit_homogenes_Feld.jpg
Die Transportarbeit entspricht der Fläche im s-F-Diagramm.

-> Vorgehen im Coulomb-Feld:
%width=300px% Attach:Ladungsverschiebung_Zentralfeld.jpg
{+Problem:+} {$W_E=F_E*(r_2-r_1)$} ist nicht möglch, da die Kraft F_E nicht konstant ist:
{$F_E=1/(4Piepsi_0)*(q*Q)/(r^2)$}
-> Die Kraft nimmt mit wachsendem r ab.

-> Weg-Kraft-Diagramm bzgl. Ladung im Coulomb-Feld:
%width:300px% Attach:Arbeit_KraftWegDiagramm.jpg
Vermutung:
-> Die Transportarbeit entspricht der Fläche unter dem Graphen (markiert)
-> Dies muss näher begründet werden
%width:550px% Attach:Grenzwertprozess_Glächenberechnung.jpg
Für eine Einteilung in unendlich viele, unendlich schmale Rechtecke gilt offenbar: {$W_E=F_1*Deltar+T_2*Deltar+ ... +F_n*Deltar$} für {$n->oo$} mit {$r=(r_2-r_1)/n$}

Die Mathematiker schreiben das so:
{$W_E=int_(r1)^(r2)Fdr=int_(r1)^(r2)1/(4Piepsi_0)*(q*Q)/(r^2)dr$} mit dr=infinitesimu(kleines) {$Deltar$}
Mithilfe der Integralrechnung erhalten wir:
{$W_E=int_(r1)^(r2)1/(4Piepsi_0)*(1/(r_2)-(1)/(r_2))$}
{$=>W_E=(q*Q)/(4Piepsi_0)*(1/(r_1)-(1)/(r_2))$}
Changed line 11 from:
Charmaine Guse, Dominik, Eva Noble, Laura Schneiderbauer, Lennart, Maximilian, Pascal, Patrick Kramer, Tobias, Vanessa, Victoria, Vincent, Yannik
to:
Charmaine Guse, Dominik, Eva Noble, Laura Schneiderbauer, Lennart, Maximilian, Pascal, Patrick Kramer, Tobias, Vanessa, Victoria Liebel, Vincent, Yannik
Changed line 11 from:
Charmaine Guse, Dominik, Eva Noble, Laura Schneiderbauer, Lennart, Maximilian, Pascal, Patrick, Tobias, Vanessa, Victoria, Vincent, Yannik
to:
Charmaine Guse, Dominik, Eva Noble, Laura Schneiderbauer, Lennart, Maximilian, Pascal, Patrick Kramer, Tobias, Vanessa, Victoria, Vincent, Yannik
Changed line 11 from:
Charmaine, Dominik, Eva Noble, Laura Schneiderbauer, Lennart, Maximilian, Pascal, Patrick, Tobias, Vanessa, Victoria, Vincent, Yannik
to:
Charmaine Guse, Dominik, Eva Noble, Laura Schneiderbauer, Lennart, Maximilian, Pascal, Patrick, Tobias, Vanessa, Victoria, Vincent, Yannik
Changed line 11 from:
Charmaine, Dominik, Eva Noble, Laura, Lennart, Maximilian, Pascal, Patrick, Tobias, Vanessa, Victoria, Vincent, Yannik
to:
Charmaine, Dominik, Eva Noble, Laura Schneiderbauer, Lennart, Maximilian, Pascal, Patrick, Tobias, Vanessa, Victoria, Vincent, Yannik
Changed line 11 from:
Charmaine, Dominik, Eva, Laura, Lennart, Maximilian, Pascal, Patrick, Tobias, Vanessa, Victoria, Vincent, Yannik
to:
Charmaine, Dominik, Eva Noble, Laura, Lennart, Maximilian, Pascal, Patrick, Tobias, Vanessa, Victoria, Vincent, Yannik
Changed line 111 from:
Das Strommessgerät zeigt nur dann einen Ladungsfluss an, wenn die Platte auf der Seite des Strommessgerätes positiv geladen ist. Das heisst, negative Ladungen treten aus dem Glühdrat aus und werden zur "+"-Platte hin beschleunigt. Lädt man die rechte Platte negativ auf, so zeigt das Messgerät keinen Ladungsfkluss an. Es treten demnach keine positiven Ladungsträger aus.
to:
Das Strommessgerät zeigt nur dann einen Ladungsfluss an, wenn die Platte auf der Seite des Strommessgerätes positiv geladen ist. Das heisst, negative Ladungen treten aus dem Glühdrat aus und werden zur "+"-Platte hin beschleunigt. Lädt man die rechte Platte negativ auf, so zeigt das Messgerät keinen Ladungsfluss an. Es treten demnach keine positiven Ladungsträger aus.
Changed line 10 from:
Es wurde von den folgenden Schülern der Oberstufe verfasst (alphabetisch): //
to:
Es wurde von den folgenden Schülern der Oberstufe verfasst (alphabetisch): \\
Changed line 3 from:
Das PhYsiK-sKriPt ist im Aufbau befindliches ein digitales Buch über die Physik der hessischen Oberstufe. \\
to:
Das PhYsiK-sKriPt ist ein im Aufbau befindliches digitales Buch über die Physik der hessischen Oberstufe. \\
Changed lines 1-3 from:
Das Physik-Skript ist im Aufbau befindliches ein digitales Buch über die Physik der hessischen Oberstufe. \\
to:
(:title Das PhYsiK-sKriPt :)

Das PhYsiK-sKriPt
ist im Aufbau befindliches ein digitales Buch über die Physik der hessischen Oberstufe. \\
Changed line 6 from:
Das Physik-Skript steht unter der folgenden Lizenz:
to:
Das PhYsiK-sKriPt steht unter der folgenden Lizenz:
Deleted lines 13-14:

[[PhysikSkript/ELehre]]
Changed line 1 from:
Das Physik-Skript ist im Aufbau befindliches ein digitales Buch über die Physik der hessischen Oberstufe. //
to:
Das Physik-Skript ist im Aufbau befindliches ein digitales Buch über die Physik der hessischen Oberstufe. \\
Changed line 8 from:
Es wurde von den folgenden Schülern der Oberstufe verfasst (alphabetisch):
to:
Es wurde von den folgenden Schülern der Oberstufe verfasst (alphabetisch): //
Changed lines 13-33 from:
Für die Autoren gibt es die [[PhysikSkript/Autorenseite]]

Die Autoren sind:

* %red% [[PhysikSkript/EvaNCache| Eva]]
* %red% [[PhysikSkript/SDLCache| SDL]]
* %red% [[PhysikSkript/LauraSCache| Laura]]
* %red% [[PhysikSkript/LennartRCache| Lennart]]
* %red% [[PhysikSkript/SarahTCache| Sarah]]
* %red% [[PhysikSkript/TobiasF| Tobias]]
* %red% [[PhysikSkript/VanessaG| Vanessa]]
* %red% [[PhysikSkript/WanjaW| Wanja]]
* %red% [[PhysikSkript/YannikR| Yannik]]
* %red% [[PhysikSkript/VincentF| Vincent]]
* %red% [[PhysikSkript/CharmaineG| Charmaine]]
* %red% [[PhysikSkript/VictoriaL| Victoria]]
* %red% [[PhysikSkript/PascalR| Pascal]]
* %red% [[PhysikSkript/PatrickK| Patrick]]
* %red% [[PhysikSkript/MaximilianL| Maximilian]]
* %red% [[PhysikSkript/DominikK| Dominik
]]
to:
Für die Autoren gibt es die %red% [[PhysikSkript/Autorenseite]]
Changed lines 16-388 from:
Attach:Skizzen.zip
to:

>>frame<<
! Inhalt
# %red% [[#LadungenUndKräfte | Existenz von 2 verschiedenen Ladungen, Abstoßende und anziehende Kräfte]]
# %red% [[#GleichnamigeLadungen | Gleichnamige Ladungen stoßen sich ab!]]
# %red% [[#Elektroskop | Die Funktionsweise des Elektroskop]]
# %red% [[#LeiterUndNichtleiter | Leiter und Nichtleiter]]
# %red% [[#Neutralisation | Neutralisation von Ladungen]]
# %red% [[#Elektronengasmodell | Das Elektronengasmodell elektrischer Leiter]]
# %red% [[#BeweglichkeitLadungen | Freie Beweglichkeit negativer Ladungen]]
# %red% [[#Influenz | Influenz]]
# %red% [[#Kelvinmaschine | Die Influenzmaschine nach Kelvin]]
# %red% [[#Dipole | Dipole]]
# %red% [[#InduzierteDipole | Induzierte Dipole]]
# %red% [[#FeldtheorieFaraday | Faraday's Feldtheorie]]
# %red% [[#Feldlinienbilder | Feldlinienbilder von Punktladungen und Kondensatoren]]
# %red% [[#TangentialeFeldkraft | Elektrische Kräfte wirken tangential zu den Feldlinien]]
# %red% [[#FeldlinienSenkrecht | Die Feldlinien enden senkrecht an der Oberfläche geladener metallischer Körper]]
# %red% [[#FaradayscherKäfig | Der Faraday'sche Käfig]]
# %red% [[#ElektrischeKraft | Der Zusammmenhang zwischen Ladung, Kraft und Stärke des E-Feldes]]
# %red% [[#VergleichMitGravitation | Parallelen und Unterschiede zwischen elektrischem Feld und Gravitation]]
# %red% [[#GoldeneRegel | Bewegungen senkrecht und diagonal zu den Feldlinien]]
# %red% [[#DefSpannung | Definition der Spannung]]
# %red% [[#ExpSpannungKondensator | Untersuchung der Spannung zwischen Kondensatorplatten]]
# %red% [[#Aequipotentialflaechen | Potential und Äquipotentialfläche]]
# %red% [[#UEdPlattenkondensator | Der Zusammenhand zwischen U, E und d beim Plattenkondensator]]
# %red% [[#Elektronenkanone | Die Elektronenkanone]]
# %red% [[#Elektronenvolt | Die Einheit Elektronenvolt]]
# %red% [[#BrownscheRoehre | Das Ablenksystem einer Brown'schen Röhre]]
# %red% [[#ZusammenhangFlaechenladung | Der Zusammenhang zwischen Flächenladung und Feldstärke]]
# %red% [[#AbhFlaechenladungFeld |Die Flächenladung hängt tatsächlich nur vom Feld E ab!!]]
>><<

!![[#LadungenUndKräfte]]{+1.: Existenz von 2 verschiedenen Ladungen, Abstoßende und anziehende Kräfte+}
{+Experiment+}:
Jeder Schüler zieht Gefrierbeutelstreifen auseinander, welche aneinander gehalten werden

{+Beobachtung und Vermutungen+}:
%width=300px% Attach:1_Folien.jpg

=> Es gibt zwei verschiedene Arten von Ladung, die entweder anziehnd oder abstoßende Kräfte aufeinander ausüben. Zur Unterscheidung bezeichnen wir sie mit "+" beziehungsweise mit "-".

{+Hypothesen+}:
1.1 Gleichnamige Ladungen stoßen sich ab, ungleichnamige ziehen sich an
1.2 Ungleichnamige Ladungen stoßen sich ab, gleichenamige ziehen sich an
=> Keine der Hypothesen kann durch dieses Experiment als falsch erklärt werden. Dies verdeutlicht den Falsifizierungscharakter der Physik!

!![[#GleichnamigeLadungen]]{+2.: Gleichnamige Ladungen stoßen sich ab!+}
{+Experiment+}:
Es werden 2 Strohhalme werden zusammengedrückt aufgeladen, sie haben also beide die gleiche Ladung
%width=300px% Attach:2_Strohhalme.jpg
{+Schlussfolgerung+}:
=> Gleichnamig geladene Strohhalme stoßen sich ab, deshalb wird die Hypothese 1.2 verworfen!

!![[#Elektroskop]]{+3.: Die Funktionsweise des Elektroskop+}
%width=200px% Attach:3_geladenes_Elektroskop.jpg
{+Ergebnis+}:
Wird ein Elektroskop geladen, so stößt sich der frei bewegliche Zeiger aufgrund der gleichnamigen Ladung vom Elektroskopstab ab.

!![[#LeiterUndNichtleiter]]{+4.: Leiter und Nichtleiter+}

Mit dem Elektroskop kann man folgendes feststellen :

=> Es gibt Leiter, die Ladungen weiterleiten, wie zum Beispiel Eisen, Kupfer, Graphit, usw.

=> Es gibt Nichtleiter, die Ladungen nicht weiterleiten können, wie zum Beispiel Plastik, Styropor, glas, usw.

=> Es gibt Stoffe, die Ladungen nur bedingt leiten, also lediglich schwach, wie zum Beispiel Wasser und andere Lösungen.

!![[#Neutralisation]]{+5.: Neutralisation von Ladungen+}

Ein Gefrierbeutelstreifen wird getrennt und die beiden Streifenhälften werden auf die Platten unterschiedlicher Elektroskope gelegt. => Diese schlagen aus...

Attach:positivesundnegativesElektroskop.jpg

Nachdem die Platten miteinander kurz in Berührung gebracht werden, geht der Ausschlag zurrück.

Die Ladungen überlagern sich und neutralisieren ihre Wirkungen
In diesem Fall müsste man sie auch wieder trennen können. ==> Z.B. durch Reibung mit einem anderen Stoff (Reibungselektrizität)

!![[#Elektronengasmodell]]{+6.: Das Elektronengasmodell elektrischer Leiter+}

Annahmen :
--> In metallischen Leitern existieren positive und negative Ladungen
--> Die positiven Ladungen liegen fest, die negativen Ladungen sind frei beweglich. Die negativen Ladungsträger nennt man Elektronen.
--> Metallische Körper sind bei einem Elektronenüberschuss negativ geladen, wohingegen bei einem Elektronenmangel die positiven Ladungen und der metallische Körper ist positiv geladen.

%width=200% Attach:ModellvorstellungLadungen.jpg

!!{+7. Ziel: Kondensator, Aufladung durch Netzgerät, Erklärung von Strom auf Basis von Ladungen+}

!![[#BeweglichkeitLadungen]]{+8.: Freie Beweglichkeit negativer Ladungen+}

%width=500px% Attach:8_Funktionsweise_Diode.jpg

Das Strommessgerät zeigt nur dann einen Ladungsfluss an, wenn die Platte auf der Seite des Strommessgerätes positiv geladen ist. Das heisst, negative Ladungen treten aus dem Glühdrat aus und werden zur "+"-Platte hin beschleunigt. Lädt man die rechte Platte negativ auf, so zeigt das Messgerät keinen Ladungsfkluss an. Es treten demnach keine positiven Ladungsträger aus.

>>frame<<=> Nur negative Ladungsträger sind beweglich!
>><<


!![[#Influenz]]{+9.: Influenz+}

Experiment: Eine geladene Folie wird einem neutral geladenem elektroskop angenähert, ohne es zu berühren.

Attach:9_Influenz.jpg

Das Elektroskop schlägt aus. Der Ausschlag geht zurück, wenn die Folie wieder entfernt wird.

'''=> Die negativen Ladungen werden nach oben gezogen!'''

'''=> Beweis, dass neutrale Körper sowohl aus negativen als auch aus positiven Ladungen bestehen, deren Wirkungen sich neutralisieren!'''

!![[#Kelvinmaschine]]{+10.: Die Influenzmaschine nach Kelvin+}

%width=300px% Attach:10_Kelvinmaschine.jpg

Als direktes Anwendungsbeispiel.
Auf einem ähnlichen Prinzip beruhend: Der Bandgenerator, Influenzmaschine aus Sammlung


!![[#Dipole]]{+11.: Dipole+}

'''Exp.:''' Ein Wasserstrahl wird sowohl von einer positiv geladenen, wie von einer negativ geladenen Folie abgelenkt- und zwar zur Folie hin.
%width=500px% Attach:11_Abgelenkter_Wasserstrahl_Dipol.jpg
Ein Teilchen heißt Dipol, wenn es zwar insgesamt neutral geladen ist, die Ladungen in ihm aber so verteilt sind, dass es zwei Pole besitzt.


!![[#InduzierteDipole]]{+12.: Induzierte Dipole+}

'''Exp.:''' Auf einem Tisch liegende Grieskörner werden sowohl von einer negativ geladenen, als auch von einer positiv geladenen Folie angezogen.


'''Erklärung:''' Durch die Influenz verrücken die in den Grieskörnern fest sitzenden Ladungen etwas, wodurch kleine Dipole entstehen.

!![[#FeldtheorieFaraday]]{+13.: Faraday's Feldtheorie+}
%width=300px% Attach:13_Feld_Konduktorkugeln.jpg
''Wie zieht eine Ladung eine andere zu sich her oder stößt sie ab?''

- Früher glaubte man an Fernkräfte

- Faraday nahm das Umfeld von Ladungen durch ein elektrisches Feld durchzogen an, welches die elektrischen Kräfte bewirkt.

- Ladungen erfahren in elektrischen Feldern Kräfte, die tangential zu den Feldlinien wirken.


!![[#Feldlinienbilder]]{+14.:Feldlinienbilder von Punktladungen und Kondensatoren+}

{+Experiment+}: Mit Grieskörnern in einer Schale mit Rizinus-Öl wird folgendes untersucht:

'''Das Feld einer Punktladung:'''
%width=300% Attach:FeldlinienPunktladung.jpg
'''Das Feld zweier sich anziehender Punktladungen:'''
%width=300% Attach:FeldlinienAnziehendePunktladungen.jpg
'''Das Feld zweier sich abstoßender Punktladungen:'''
%width=300% Attach:FeldlinienAbstossendePunktladungen.jpg
'''Das Feld eines Kondensators:'''
%width=300% Attach:FeldlinienKondensator.jpg

Zwischen zwei Kondensatorplatten verlaufen die Feldlinien parallel und im gleichen Abstand. Überall ist die Stärke des elektrischen Feldes gleich groß. Solche Felder nennt man '''homogen'''.


!![[#TangentialeFeldkraft]]{+15.: Elektrische Kräfte wirken tangential zu den Feldlinien+}

{+Experiment+}: Eine kleine gelandene Konduktorkugel wird an einem Faden in den Kondensator gehalten

{+Beobachtung+}: Die Kugel schklägt parallel zur E-Feld-Richtung aus, wenn sie positiv gelanden ist. Bei negativer Ladung schlägt sie antiparallel zur E-Feld-Richtung aus.

=> die Kräfte wirken tangential zu den Feldlinien (F II E-Feld)

%width=200% Attach:Kraft_im_Feld.jpg


!![[#FeldlinienSenkrecht]]{+16.: Die Feldlinien enden senkrecht an der Oberfläche geladener metallischer Körper+}
(siehe Arbeitsblatt)


!![[#FaradayscherKäfig]]{+17.: Der Faraday'sche Käfig+}

%width=400% Attach:Faraday_Becher.jpg

=> Aufgrund der freien Beweglichkeit der Ladungen, bewegen sich diese so lange, bis das Feld im Inneren ausgeglichen ist.

!![[#ElektrischeKraft]]{+18.: Der Zusammmenhang zwischen Ladung, Kraft und Stärke des E-Feldes +}

Wovon hängt die Sträke der auf die Ladung q wirkende Kraft ab?

=>q, E:
* Je größer q, desto größer F
* Je größer E, desto größer F

=> Definitionsgleichung für E:
{$ F = q * E $}

>>frame<< Die Feldstärke E in einem Punkt des Feldes ist der von der Ladung q unabhängige Vektor {$ E = (1)/(q) * F $}
>><<

%width=400% Attach:18_Messung_Feldkraefte.jpg
[[<<]]

!![[#VergleichMitGravitation]]{+19.: Parallelen und Unterschiede zwischen elektrischem Feld und Gravitation +}

%width=400% Attach:19_Analogie_Schwerefeld_E-Feld.jpg
[[<<]]
!!!{+ Analogien: +}

|| border=1 width=500
||! Feldart ||! gravitativ ||! elektrisch ||
||! Eigenschaft des Probekörpers || Masse m || Ladung ||
||! Kräfte || {$ F_G = m * g $} || {$ F_E = q * E $} ||
||! Feldstärke || {$ g = F_G / m $} || {$ E = F/q $} ||
||! Arbeit bei Strecke d parallel zum Feld || {$ W_G = F_G * d = m * g * d $} || {$ W_E = F_E * d = q * E * d $} => im homogenen Feld ||

[[<<]]

!!! {+ Unterschiede: +}

=> Gravtiationsfeld wirkt an Masse, E-Feld auf Ladungen

=> Gravitationskräfte wirken nur anziehend, E-Kräfte können zudem abstoßend wirken

=> Es gibt nur eine "Art" masse der zwei "Arten" Ladungen



!![[#GoldeneRegel]]{+20.: Bewegungen senkrecht und diagonal zu den Feldlinien+}

%width=400% Attach:ParallelZuGravitation.jpg

1. Bildreihe: Wie bei der Gravitation bei Massen auch, wird keine Arbeit durch das Feld verrichtet wenn sich die Ladungen senkrecht zu den Feldlinien bewegen.

2+3 Bildreihe: Wie bei der Gravitation hängt die Transportarbeit nur von dem Anteil "d" der Strecke ab, der in Richtung der Feldkräfte verläuft.

!![[#DefSpannung]]{+21.: Definition der Spannung+}

Feldlinien verrichten an der Ladung "q" zwischen zwei Punkten die Transportarbeit "W". Die elektrische Spannung zwischen diesen Punkten ist dann wie folgt definiert:

=> Spannung = Verrichtete Arbeit / Ladung

{$ U=W/q $}
Einheit:{$ 1V={1J}/{1C} $}

Die Spannung 1V bedeutet also, dass beim Transport der Ladung 1C von den Feldkräften die Arbeit 1J verrichtet wird.

!![[#ExpSpannungKondensator]]{+22.: Untersuchung der Spannung zwischen Kondensatorplatten+}
Exp.: Zwischen zwei Aluminiumstreifen, welche die Kondesatorplatten darstellen, wird ein feuchtes Papiertuch gelegt. Die "Platten" werden mit einem Netzgerät auf die Spannung 9 Volt gebracht. Das Ganze wird zur Abschirmung von außen auf eine Styroporplatte gelegt. Mit einem Messverstärker können nun die Spannungsdifferenzen zwischen zwei beliebigen Punkten zwischen den Platten gemessen werden.\\
Feststellungen:\\
%width=250px% Attach:Kondensatorplatten.jpg
-Zwischen zwei Punkten, die auf einer Parallelen zu den Kondensatorplatten liegen, ist die Spannung\\
-Die Spannung nimmt parallel zu den Feldlienien linear zu.\\
=>Spannung existiertin einem Feld auch wenn keine Ladungen transportiert werden. Sie gibt die Arbeit pro Ladung an, die ein Feld verrichten würde, wenn sich die Ladung von dem einen zum anderen Punkt bewegt.
[[<<]]

!![[#Aequipotentialflaechen]]{+23.:Potential und Äquipotentialfläche+}
In Anlehnung an die potentielle Energie aus der Mechanik, nennt man die Spannung relativ zur zu einem festen Bezugspunkt (z.B. linke Kondensatorplatte), welcher einfach willkürklich festgelegt werden kann, Potential.\\
Punkte aus 22., zwischen denen die Spannung 0 ist, liegen auf einer Parallelen zu den Kondesatorplatten. Auf allen Punkten dieser Parallelen hätte die Ladung die selbe "elektrische potentielle Energie" bzw. das selbe Potential, da keine Arbeit verrichtet werden muss, um sie von einem Punkt zu einem anderen entlang einer dieser Lienien zu verschieben. Man nennt die Parallele daher Äquipotentialfläche.\\
\\
%width=250px% Attach:Aequipo1.jpg
%width=250px% Attach:Aequipo2.jpg

!![[#UEdPlattenkondensator]]{+24.: Der Zusammenhand zwischen U, E und d beim Plattenkondensator+}

Der Abstand zweier Kondensatorplatten ist d. Diese sind an der Gleichspannung U angeschlossen und werden von dieser Spannungsquelle geladen.
Darin verrichtet das Feld auf eine Probeladung q, die von einer Platte zur anderen transportiert wird, die Arbeit {$ W_E = q*E*d $}. Daraus folgt für die Spannung zwischen den Platten:
{$ U = W_E/q = E*d -> E= U/d -> [E] = V/m $}

--&gt;Experimentelle Überprüfung
D.h. über die an einem Plattenkondensator anliegende Spannung lässt sich eine Aussage über die Stärke des E-Feldes machen.


!![[#Elektronenkanone]]{+25. Die Elektronenkanone+}

Ladung: {$ q = -e = -1,602*10^-19 $}
Masse: {$ m_e = 9,10938291*10^-31 $}
Später wird gezeigt, wie man dies experiementell ermittelt.

%width=300px% Attach:Elektronenkanone.jpg

Die Idee:
* Über einen Glühdraht Eletronen auslösen
* Im elektrischen Feld zweier Kondensatorplatten die Elektronen beschleunigen
* Die Elektronen durch eine Lücke in der hinteren Platte rausfliegen lassen

Berechnung der Geschwindigkeit der Elektronen:
--> Weil die Elektronen die Spannungsdifferenz {$U_a$} durchlaufen, verrichtet das Feld an ihnen die Beschleunigungsarbeit
{$ W_E = q*U_a $}

--> Die Arbeit, die benötigt wird, um die Elektronen auf die Geschwindigkeit v zu bringen, ist: {$ W= 1/2*m*v^2 $}

{$ -> 1/2 mv^2 = q*U_a $}
{$ -> v=sqrt((2*q*U_a)/(m)) $}

Exp.:
Die Elektronen in einem Experiment werden mit 5000V beschleunigt.
Wie groß ist ihre Geschwindigkeit?
{$ v ~~ 42000 {km}/s $}

{+Hinweis:+}
Bei noch höheren Beschleunigungsspannungen muss relativistisch gerechnet werden.

!![[#Elektronenvolt]]{+26. Die Einheit Elektronenvolt+}

Ein Elektronenvolt (kurz: eV) ist die Arbeit, die ein elektrisches Feld an der Ladung 1e verrichtet, wenn diese von einem Punkt zu einem anderen Punkt mit der Spannung 1V zwischen diesen beiden Punkten bewegt wird.
Durchläuft ein Teilchen der Ladung 1e die Spannung, so erhöht sich seine kinetische Energie um 1eV.

{$ 1eV=e*1V=1,602*10^-19J $}

!![[#BrownscheRoehre]]{+27.: Das Ablenksystem einer Brownischen Röhre+}

Die Elektronenkanone aus Aufgabe 25 erzeugt sogenannte Elektronenstrahlen, die auch Kathodenstrahlen genannt werden.
In alten Fernsehrgeräten leuchten diese Kathodenstrahlen die Mattscheibe aus, indem sie sehr schnell zeilenförmig von links oben nach rechts unten gelenkt wurden und auf der Scheibe an der jeweiligen Position einen Punkt zum Leuchten brachten.
Heute findet die Ablenkung der Sttrahlen noch in Elektroskopen Anwendung.
Doch wie könnte man solche Kathodenstrahlen ablenken?

{+Exp:+} Ein Kathodenstrahl wird von einem homogenen el. Feld abgelenkt.


%width=300px% Attach:27_Elektronenstrahlablenkung.jpg
Flugbahnberechnung:
*Die Elektronen wurden durch die Beschleunigungsspannung Ua auf die Geschwindigkeit in x-Richtung
{$ Vx = sqrt{(2*e*Ua)/me} $}
*Wegen der Platten wirkt in y-Richtung die Kraft
{$ Fy = e*Ey = e*(Uy/dy) $}
*Diese beschleunigt die Elektronen gemäß {$ Fy = me*? $}
=> {$ ay = Fy/me = (e/me)*(Uy/dy) $}


*In x-Richtung legen die Elektronen in der Zeit t die Strecke {$ sx = vx*t $} zurück. Für die Breite der Platten benötigen sie daher die Zeit {$ tp = lx/vx $}.
*Während dieser Zeit beschleunigen sie mit ay. Sie erreichen nach der Zeit tp die Geschwindigkeit in y-Richtung:
{$ vy = ay*tp = (e/me)*(Uy/dy)*te = (e*Uy*lx)/(me*dy*vy) $}
*Am Ende der Kondensatorplatten haben die Elektronen dann den folgenden Weg in y-Richtung zurückgelegt:
{$ sy = 1/2*ay*tp^2 = 1/2*(e/me)*(Uy/dy)*(lx/vx)^2 = 1/2*(e*Uy*lx^2)/(me*dy*vx^2)= 1/2*( {-e-} *Uy*lx^2)/({-me-}*dy*((2* {-e-} *Ua)/{-me-}) = 1/4*(lx^2*Uy)/(dy*Ua) $}

=>Der Verlauf des Kathodenstrahls in y-Richtung ist unabhängig von Masse und Ladung der Ladungsträger.


!![[#ZusammenhangFlaechenladung]]{+28. Ziel: Der Zusammenhang zwischen Flächenladung und Feldstärke+}

%width=200px% Attach:scheibeankondensator.jpg

Experiment: Eine Metallscheibe mit dem Radius r= 0,05m wird an die Innenfläche einer Kondensatorscheibe gedrückt. Die auf dieser Fläche befindlichen Ladungen werden mit der Scheibe abgehoben. Die auf der Scheibe befindliche Ladung wird gemessen.

Wovon hängt es ab, wie viel Ladung auf die Scheibe passt?

- Je größer die Spannung U, desto größer die Ladung Q (d konstant)
- Je größer der Abstand d, desto kleiner die Ladung Q (U konstant)

Durchführung des Experiments, Meßwerte:

|| border=1
|| '''Spannung U''' || '''Abstand d''' || '''Feldstärke E = U/d''' || '''Ladung auf Scheibe Q''' || '''Q''' ||
|| 2500 V|| 4 cm || 62500 V/m || 4,7 nC || 5,89 * 10^-7 ||
|| 4000 V|| 4 cm || 1000000 V/m || 7,1 nC || 9,04 * 10^-7 ||
|| 5500 V|| 4 cm || 137500 V/m || 9,5 nC || 1,2 * 10^-6 ||
|| 2500 V|| 2 cm || 125000 V/m || 9,5 nC || 1,2 * 10^-6 ||
|| 2500 V|| 6 cm || 41666,7 V/m || 2,8 nC || 3,57 * 10^-7 ||
|| 4000 V|| 6 cm || 66666,7 V/m || 4,1 nC || 5,22 * 10^-7 ||
|| 5500 V|| 6 cm || 91666,7 V/m || 5,4 nC || 6,88 * 10^-7 ||
|| 10000V|| 6 cm || 166666,7 V/m || 11,1 nC || 1,41 * 10^-6 ||


[+Ergebnis:+] Unabhängig von U oder d ist Q immer proportional zu E.


!![[#AbhFlaechenladungFeld]]{+ 29. Die Flächenladung hängt tatsächlich nur vom Feld E ab!! +}
%width=200px% Attach:ladungstrennungscheibeninfluenz.jpg

Zwei Scheiben werden im homogenen Feld E senkrecht zu den Feldlinien zusammen gehalten. Wegen Influenz kommt es zu der in der Abbildung gezeigten Ladungstrennung.
Die Scheiben werden im Feld getrennt und die Ladungen gemessen.
Ergebnis: Auf den Scheiben ist genau so viel Ladung wie auf einer gleich großen Fläche der Kondensatorplatten.

- Da an den Scheiben keine Spannung anliegt, sondern diese nur mit dem E-Feld wechselwirken, folgt:
Die Menge an Ladungen hängt nur von der Stärke des elektrischen Feldes ab.
Changed lines 1-2 from:
Das Physik-Skript soll eine möglichst gut verständliche Zusammenfassung der in der hessischen Qualifikationsphase unterrichteten physikalischen Zusammenhänge werden. Sie ist derzeit in Aufbau und steht unter der folgenden Lizenz:
to:
Das Physik-Skript ist im Aufbau befindliches ein digitales Buch über die Physik der hessischen Oberstufe. //
Es soll möglichst gut verständlich
in die physikalischen Zusammenhänge einführen und so hessischen Schülern unterrichtsbegleitend beim Verständnis helfen.

Das Physik-Skript
steht unter der folgenden Lizenz:
Added lines 7-13:

Es wurde von den folgenden Schülern der Oberstufe verfasst (alphabetisch):
Charmaine, Dominik, Eva, Laura, Lennart, Maximilian, Pascal, Patrick, Tobias, Vanessa, Victoria, Vincent, Yannik

Organisation und Struktur: Alexander Staidl

Für die Autoren gibt es die [[PhysikSkript/Autorenseite]]
Changed line 8 from:
* %red% [[PhysikSkript/JuliusVCache| Julius]]
to:
* %red% [[PhysikSkript/SDLCache| SDL]]
Deleted lines 25-28:

|| border=1
|| {$ F_E=q*E 4 $} || Spalte2 || Spalte3 ||
|| Zeile 2 || Zeile 2 || Zeile 2 ||
Changed line 28 from:
|| {$ F_E=q*E 4} || Spalte2 || Spalte3 ||
to:
|| {$ F_E=q*E 4 $} || Spalte2 || Spalte3 ||
Changed lines 25-29 from:
Attach:Skizzen.zip
to:
Attach:Skizzen.zip

|| border=1
|| {$ F_E=q*E 4} || Spalte2 || Spalte3 ||
|| Zeile 2 || Zeile 2 || Zeile 2 ||
Deleted line 21:
* %red% [[PhysikSkript/SarahT| Sarah]]
Added lines 22-23:
* %red% [[PhysikSkript/SarahT| Sarah]]
* %red% [[PhysikSkript/DominikK| Dominik]]
Added lines 22-23:

[[PhysikSkript/ELehre]]
Added line 21:
* %red% [[PhysikSkript/MaximilianL| Maximilian]]
Changed lines 15-20 from:
to:
* %red% [[PhysikSkript/YannikR| Yannik]]
* %red% [[PhysikSkript/VincentF| Vincent]]
* %red% [[PhysikSkript/CharmaineG| Charmaine]]
* %red% [[PhysikSkript/VictoriaL| Victoria]]
* %red% [[PhysikSkript/PascalR| Pascal]]
* %red% [[PhysikSkript/PatrickK| Patrick]]
Changed lines 7-14 from:
* [[PhysikSkript/EvaNCache| Eva]]
* [[PhysikSkript/JuliusVCache| Julius]]
* [[PhysikSkript/LauraSCache| Laura]]
* [[PhysikSkript/LennartRCache| Lennart]]
* [[PhysikSkript/SarahTCache| Sarah]]
* [[PhysikSkript/TobiasF| Tobias]]
* [[PhysikSkript/VanessaG| Vanessa]]
* [[PhysikSkript/WanjaW| Wanja]]
to:
* %red% [[PhysikSkript/EvaNCache| Eva]]
* %red% [[PhysikSkript/JuliusVCache| Julius]]
* %red% [[PhysikSkript/LauraSCache| Laura]]
* %red% [[PhysikSkript/LennartRCache| Lennart]]
* %red% [[PhysikSkript/SarahTCache| Sarah]]
* %red% [[PhysikSkript/TobiasF| Tobias]]
* %red% [[PhysikSkript/VanessaG| Vanessa]]
* %red% [[PhysikSkript/WanjaW| Wanja]]

Attach:Skizzen.zip
Added lines 1-14:
Das Physik-Skript soll eine möglichst gut verständliche Zusammenfassung der in der hessischen Qualifikationsphase unterrichteten physikalischen Zusammenhänge werden. Sie ist derzeit in Aufbau und steht unter der folgenden Lizenz:

* %red newwin% [[http://creativecommons.org/licenses/by-nc-sa/3.0/deed.de| Creative Commons Namensnennung - Nicht-kommerziell - Weitergabe unter gleichen Bedingungen 3.0 Unported Lizenz.]]

Die Autoren sind:

* [[PhysikSkript/EvaNCache| Eva]]
* [[PhysikSkript/JuliusVCache| Julius]]
* [[PhysikSkript/LauraSCache| Laura]]
* [[PhysikSkript/LennartRCache| Lennart]]
* [[PhysikSkript/SarahTCache| Sarah]]
* [[PhysikSkript/TobiasF| Tobias]]
* [[PhysikSkript/VanessaG| Vanessa]]
* [[PhysikSkript/WanjaW| Wanja]]